Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 31(12): e1807274, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30714221

ABSTRACT

Random dielectrics defines a class of non-absorbing materials where the index of refraction is randomly arranged in space. Whenever the transport mean free path is sufficiently small, light can be confined in modes with very small volume. Random photonic modes have been investigated for their basic physical insights, such as Anderson localization, and recently several applications have been envisioned in the field of renewable energies, telecommunications, and quantum electrodynamics. An advantage for optoelectronics and quantum source integration offered by random systems is their high density of photonic modes, which span a large range of spectral resonances and spatial distributions, thus increasing the probability to match randomly distributed emitters. Conversely, the main disadvantage is the lack of deterministic engineering of one or more of the many random photonic modes achieved. This issue is solved by demonstrating the capability to electrically and mechanically control the random modes at telecom wavelengths in a 2D double membrane system. Very large and reversible mode tuning (up to 50 nm), both toward shorter or longer wavelength, is obtained for random modes with modal volumes of the order of few tens of (λ/n)3 .

2.
Light Sci Appl ; 6(4): e16245, 2017 Apr.
Article in English | MEDLINE | ID: mdl-30167241

ABSTRACT

The efficient interaction of light with quantum emitters is crucial to most applications in nano and quantum photonics, such as sensing or quantum information processing. Effective excitation and photon extraction are particularly important for the weak signals emitted by a single atom or molecule. Recent works have introduced novel collection strategies, which demonstrate that large efficiencies can be achieved by either planar dielectric antennas combined with high numerical aperture objectives or optical nanostructures that beam emission into a narrow angular distribution. However, the first approach requires the use of elaborate collection optics, while the latter is based on accurate positioning of the quantum emitter near complex nanoscale architectures; hence, sophisticated fabrication and experimental capabilities are needed. Here we present a theoretical and experimental demonstration of a planar optical antenna that beams light emitted by a single molecule, which results in increased collection efficiency at small angles without stringent requirements on the emitter position. The proposed device exhibits broadband performance and is spectrally scalable, and it is simple to fabricate and therefore applies to a wide range of quantum emitters. Our design finds immediate application in spectroscopy, quantum optics and sensing.

SELECTION OF CITATIONS
SEARCH DETAIL