Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38436413

ABSTRACT

Climate change is having a dramatic effect on the environment, with rising global temperatures and more frequent extreme climatic events, such as heatwaves, that can hamper organisms' biological functions. Although it is clear that sudden and extreme temperatures can damage reproductive processes, there is limited understanding of the effects of heatwaves on male mating behaviour and reproductive success. We tested for the effects of heat stress induced by ecologically relevant heatwaves (33°C and 39°C for five consecutive days) on the mating behaviour, reproductive success, body mass and survival of male field crickets Gryllus bimaculatus, paired with untreated females. We predicted life-history and reproductive costs would increase with increasing heatwave intensity. Consistent with our expectations, males exposed to the highest heatwave temperature produced the fewest offspring, while having to increase courtship effort to successfully mate. Males also gained relatively more weight following heatwave exposure. Given that we found no difference in lifetime survival, our results suggest a potential trade-off in resource allocation between somatic maintenance and reproductive investment. Taken together, our findings indicate that sublethal effects of heatwaves could reduce the growth and persistence of animal populations by negatively impacting reproductive rates. These findings highlight the need for considering thermal ecologies, life history and behaviour to better understand the consequences of extreme climatic events on individuals and populations.


Subject(s)
Hot Temperature , Reproduction , Humans , Animals , Female , Male , Temperature , Climate Change , Insecta , Fever
2.
Evolution ; 76(7): 1638-1651, 2022 07.
Article in English | MEDLINE | ID: mdl-35598115

ABSTRACT

Male-biased operational sex ratios can increase male-male competition and can potentially select for both increased pre- and postcopulatory male success. In the present study, using populations of Drosophila melanogaster evolved under male-biased (M) or female-biased (F) sex ratios, we asked whether (a) male mating success can evolve, (b) males are better at mating females that they have coevolved with, (c) males mating success is affected by female mating status, and (d) male mating success is correlated with their courtship effort. We directly competed M and F males for mating with (a) virgin ancestral (common) females, (b) virgin females from the M and F populations, and (c) singly mated females from the M and F populations. We also assessed the courtship frequency of the males when paired with mated M or F females. Our results show that M males, evolving under an increased level of male-male competition, have higher mating success than F males irrespective of the female evolutionary history. However, the difference in mating success is more pronounced if the females had mated before. M males also have a higher courtship frequency than F males, but we did not find any correlation between mating success and courtship frequency.


Subject(s)
Drosophila melanogaster , Reproduction , Animals , Biological Evolution , Courtship , Drosophila melanogaster/genetics , Female , Male , Reproduction/physiology , Sex Ratio , Sexual Behavior, Animal/physiology
3.
BMC Ecol Evol ; 22(1): 38, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346023

ABSTRACT

BACKGROUND: Divergence in the evolutionary interests of males and females leads to sexual conflict. Traditionally, sexual conflict has been classified into two types: inter-locus sexual conflict (IeSC) and intra-locus sexual conflict (IaSC). IeSC is modeled as a conflict over outcomes of intersexual reproductive interactions mediated by loci that are sex-limited in their effects. IaSC is thought to be a product of selection acting in opposite directions in males and females on traits with a common underlying genetic basis. While in their canonical formalisms IaSC and IeSC are mutually exclusive, there is growing support for the idea that the two may interact. Empirical evidence for such interactions, however, is limited. RESULTS: Here, we investigated the interaction between IeSC and IaSC in Drosophila melanogaster. Using hemiclonal analysis, we sampled 39 hemigenomes from a laboratory-adapted population of D. melanogaster. We measured the contribution of each hemigenome to adult male and female fitness at three different intensities of IeSC, obtained by varying the operational sex ratio. Subsequently, we estimated the intensity of IaSC at each sex ratio by calculating the intersexual genetic correlation (rw,g,mf) for fitness and the proportion of sexually antagonistic fitness-variation. We found that the intersexual genetic correlation for fitness was positive at all three sex ratios. Additionally, at male biased and equal sex ratios the rw,g,mf was higher, and the proportion of sexually antagonistic fitness variation lower, relative to the female biased sex ratio, although this trend was not statistically significant. CONCLUSION: Our results indicate a statistically non-significant trend suggesting that increasing the strength of IeSC ameliorates IaSC in the population.


Subject(s)
Drosophila melanogaster , Reproduction , Adaptation, Physiological/genetics , Animals , Biological Evolution , Drosophila melanogaster/genetics , Female , Male , Phenotype
4.
Evol Lett ; 5(6): 657-671, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34919096

ABSTRACT

Males and females are subjected to distinct kinds of selection pressures, often leading to the evolution of sex-specific genetic architecture, an example being sex-specific dominance. Sex-specific dominance reversals (SSDRs), where alleles at sexually antagonistic loci are at least partially dominant in the sex they benefit, have been documented in Atlantic salmon, rainbow trout, and seed beetles. Another interesting feature of many sexually reproducing organisms is the asymmetric inheritance pattern of X chromosomes, which often leads to distinct evolutionary outcomes on X chromosomes compared to autosomes. Examples include the higher efficacy of sexually concordant selection on X chromosomes, and X chromosomes being more conducive to the maintenance of sexually antagonistic polymorphisms under certain conditions. Immunocompetence is a trait that has been extensively investigated for sexual dimorphism with growing evidence for sex-specific or sexually antagonistic variation. X chromosomes have been shown to harbor substantial immunity-related genetic variation in the fruit fly, Drosophila melanogaster. Here, using interpopulation crosses and cytogenetic cloning, we investigated sex-specific dominance and the role of the X chromosome in improved postinfection survivorship of laboratory populations of D. melanogaster selected against pathogenic challenge by Pseudomonas entomophila. We could not detect any contribution of the X chromosome to the evolved immunocompetence of our selected populations, as well as to within-population variation in immunocompetence. However, we found strong evidence of sex-specific dominance related to surviving bacterial infection. Our results indicate that alleles that confer a survival advantage to the selected populations are, on average, partially dominant in females but partially recessive in males. This could also imply an SSDR for overall fitness, given the putative evidence for sexually antagonistic selection affecting immunocompetence in Drosophila melanogaster. We also highlight sex-specific dominance as a potential mechanism of sex differences in immunocompetence, with population-level sex differences primarily driven by sex differences in heterozygotes.

5.
J Insect Physiol ; 98: 67-73, 2017 04.
Article in English | MEDLINE | ID: mdl-27913151

ABSTRACT

Sperm competition theory predicts that with increase in sperm competition, males either invest more in reproductive organ(s) and/or improve ejaculate investment. We test this idea using experimental evolution in Drosophila melanogaster. We maintained replicate populations of Drosophila melanogaster under male (M) and female (F) biased sex ratio regimes for more than a hundred generations with the result that males from the M regime evolved higher sperm competitive abilities relative to males from the F regime. In the present study, we measured the testes and the accessory gland size of virgin and singly mated males from the M and F regimes. The M and F males do not differ in either testis or accessory gland size. Additionally, ejaculate investment is not different in the M and F males, as measured by reduction in testis and accessory gland sizes. Thus, contrary to theoretical prediction and evidence from other species, we found that evolved differences in sperm competitive ability are not necessarily due to evolution of testis/accessory gland size or strategic ejaculate investment in these populations.


Subject(s)
Biological Evolution , Drosophila melanogaster/physiology , Mating Preference, Animal , Spermatozoa/physiology , Animals , Female , Genitalia, Male/anatomy & histology , Male , Sex Ratio , Testis/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...