Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ACS Omega ; 8(36): 32483-32497, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720780

ABSTRACT

Dengue virus (DENV) infection is one of the most widely spread flavivirus infections. Despite the fatality it could cause, no antiviral treatment is currently available to treat the disease. Hence, this study aimed to repurpose old drugs as novel DENV NS3 inhibitors. Ligand-based (L-B) and proteochemometric (PCM) prediction models were built using 62,354 bioactivity data to screen for potential NS3 inhibitors. Selected drugs were then subjected to the foci forming unit reduction assay (FFURA) and protease inhibition assay. Finally, molecular docking was performed to validate these results. The in silico studies revealed that both models performed well in the internal and external validations. However, the L-B model showed better accuracy in the external validation in terms of its sensitivity (0.671). In the in vitro validation, all drugs (zileuton, trimethadione, and linalool) were able to moderately inhibit the viral activities at the highest concentration tested. Zileuton showed comparable results with linalool when tested at 2 mM against the DENV NS3 protease, with a reduction of protease activity at 17.89 and 18.42%, respectively. Two new compounds were also proposed through the combination of the selected drugs, which are ziltri (zilueton + trimethadione) and zilool (zileuton + linalool). The molecular docking study confirms the in vitro observations where all drugs and proposed compounds were able to achieve binding affinity ≥ -4.1 kcal/mol, with ziltri showing the highest affinity at -7.7 kcal/mol, surpassing the control, panduratin A. The occupation of both S1 and S2 subpockets of NS2B-NS3 may be essential and a reason for the lower binding energy shown by the proposed compounds compared to the screened drugs. Based on the results, this study provided five potential new lead compounds (ziltri, zilool, zileuton, linalool, and trimethadione) for DENV that could be modified further.

2.
Ecohealth ; 20(2): 208-224, 2023 06.
Article in English | MEDLINE | ID: mdl-37103759

ABSTRACT

Leptospirosis is a major zoonotic disease, especially in the tropics, and rodents were known to be carriers of this bacterium. There was established information on Leptospira prevalence among animal reservoirs in human-dominated landscapes from previous literature. However, there was very little focus given comparing the prevalence of Leptospira in a wide range of habitats. An extensive sampling of small mammals from various landscapes was carried out, covering oil palm plantations, paddy fields, recreational forests, semi-urbans, and wet markets in Peninsular Malaysia. This study aims to determine the prevalence of pathogenic Leptospira in a diversity of small mammals across different landscapes. Cage-trapping was deployed for small mammals' trappings, and the kidneys of captured individuals were extracted, for screening of pathogenic Leptospira by polymerase chain reaction (PCR) using LipL32 primer. Eight microhabitat parameters were measured at each study site. Out of 357 individuals captured, 21 (5.9%) were positive for pathogenic Leptospira of which recreational forest had the highest prevalence (8.8%) for landscape types, whereas Sundamys muelleri shows the highest prevalence (50%) among small mammals' species. Microhabitat analysis reveals that rubbish quantity (p < 0.05) significantly influenced the Leptospira prevalence among small mammals. Furthermore, nMDS analysis indicates that the presence of faeces, food waste, and exposure to humans in each landscape type also were linked with high prevalence of pathogenic Leptospira among the small mammals. This study supplements previous studies on pathogenic Leptospira prevalence across different landscape types, and the major microhabitat factors associated with Leptospira prevalence. This information is crucial for epidemiological surveillance and habitat management to curb the possibility of the disease outbreaks.


Subject(s)
Leptospira , Leptospirosis , Refuse Disposal , Animals , Humans , Prevalence , Food , Mammals , Leptospirosis/epidemiology , Leptospirosis/veterinary , Murinae
3.
PLoS One ; 17(12): e0277206, 2022.
Article in English | MEDLINE | ID: mdl-36454880

ABSTRACT

Efforts are ongoing by researchers globally to develop new drugs or repurpose existing ones for treating COVID-19. Thus, this led to the use of oseltamivir, an antiviral drug used for treating influenza A and B viruses, as a trial drug for COVID-19. However, available evidence from clinical studies has shown conflicting results on the effectiveness of oseltamivir in COVID-19 treatment. Therefore, this systematic review and meta-analysis was performed to assess the clinical safety and efficacy of oseltamivir for treating COVID-19. The study was conducted according to the PRISMA guidelines, and the priori protocol was registered in PROSPERO (CRD42021270821). Five databases were searched, the identified records were screened, and followed by the extraction of relevant data. Eight observational studies from four Asian countries were included. A random-effects model was used to pool odds ratios (ORs), mean differences (MD), and their 95% confidence intervals (CI) for the study analysis. Survival was not significantly different between all categories of oseltamivir and the comparison groups analysed. The duration of hospitalisation was significantly shorter in the oseltamivir group following sensitivity analysis (MD -5.95, 95% CI -9.91--1.99 p = 0.003, heterogeneity I2 0%, p = 0.37). The virological, laboratory and radiological response rates were all not in favour of oseltamivir. However, the electrocardiographic safety parameters were found to be better in the oseltamivir group. However, more studies are needed to establish robust evidence on the effectiveness or otherwise of oseltamivir usage for treating COVID-19.


Subject(s)
COVID-19 Drug Treatment , Influenza, Human , Humans , Oseltamivir/adverse effects , Antiviral Agents/adverse effects , Influenza, Human/drug therapy
4.
Front Med (Lausanne) ; 9: 1001022, 2022.
Article in English | MEDLINE | ID: mdl-36213636

ABSTRACT

Countries around the world are gearing for the transition of the coronavirus disease 2019 (COVID-19) from pandemic to endemic phase but the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants could lead to a prolonged pandemic. SARS-CoV-2 has continued to evolve as it optimizes its adaptation to the human host and the successive waves of COVID-19 have been linked to the explosion of particular variant of concern. As the genetic diversity and epidemiological landscape of SARS-CoV-2 differ from country to country, this study aims to provide insights into the variants that are circulating in Malaysia. Whole genome sequencing was performed for 204 SARS-CoV-2 from COVID-19 cases and an additional 18,667 SARS-CoV-2 genome sequences were retrieved from the GISAID EpiCoV database for clade, lineage and genetic variation analyses. Complete genome sequences with high coverage were then used for phylogeny investigation and the resulting phylogenetic tree was constructed from 8,716 sequences. We found that the different waves of COVID-19 in Malaysia were dominated by different clades with the L and O clade for first and second wave, respectively, whereas the progressive replacement by G, GH, and GK of the GRA clade were observed in the subsequence waves. Continuous monitoring of the genetic diversity of SARS-CoV-2 is important to identify the emergence and dominance of new variant in different locality so that the appropriate countermeasures can be taken to effectively contain the spread of SARS-CoV-2.

5.
Front Nutr ; 9: 786972, 2022.
Article in English | MEDLINE | ID: mdl-35369089

ABSTRACT

Communicable diseases are illnesses caused by pathogenic biological agents, including viruses, bacteria, fungi, parasites, and protozoa. Such diseases spread among people through contact with contaminated surfaces, bodily fluids, or blood products, or through the air, insect bites, or consuming contaminated food and beverages. Although some communicable diseases can be treated or prevented by taking medication and vaccines, there has been an increase in awareness of adopting a healthy diet to aid in the prevention and reversal of these diseases. One popular diet is a plant-based diet. Plant-based diets generally consist of vegetables, grains, nuts, seeds, legumes, and fruits, without any animal-source foods or artificial ingredients. Over the years, this diet has continuously increased in popularity. Reasons for following a plant-based diet are varied but include health benefits, such as improving immunity, and reducing the risk of heart disease, diabetes, and some cancers. Scientific evidence even shows that just an increased vegetable intake can decrease the occurrence of chronic diseases caused by viruses, such as hepatitis viruses, and reduce the risk of severe coronavirus disease 2019. Therefore, this mini review discusses the effectiveness of adopting a plant-based diet in ameliorating diseases caused by selected viruses and its limitations.

6.
Front Immunol ; 13: 782936, 2022.
Article in English | MEDLINE | ID: mdl-35242128

ABSTRACT

BACKGROUND: Rhinovirus (RV) infections are a major cause of asthma exacerbations. Unlike other respiratory viruses, RV causes minimal cytotoxic effects on airway epithelial cells and cytokines play a critical role in its pathogenesis. However, previous findings on RV-induced cytokine responses were largely inconsistent. Thus, this study sought to identify the cytokine/chemokine profiles induced by RV infection and their correlations with airway inflammatory responses and/or respiratory symptoms using systematic review, and to determine whether a quantitative difference exists in cytokine levels between asthmatic and healthy individuals via meta-analysis. METHODS: Relevant articles were obtained from PubMed, Scopus, and ScienceDirect databases. Studies that compared RV-induced cytokine responses between asthmatic and healthy individuals were included in the systematic review, and their findings were categorized based on the study designs, which were ex vivo primary bronchial epithelial cells (PBECs), ex vivo peripheral blood mononuclear cells (PBMCs), and human experimental studies. Data on cytokine levels were also extracted and analyzed using Review Manager 5.4. RESULTS: Thirty-four articles were included in the systematic review, with 18 of these further subjected to meta-analysis. Several studies reported the correlations between the levels of cytokines, such as IL-8, IL-4, IL-5, and IL-13, and respiratory symptoms. Evidence suggests that IL-25 and IL-33 may be the cytokines that promote type 2 inflammation in asthmatics after RV infection. Besides that, a meta-analysis revealed that PBECs from children with atopic asthma produced significantly lower levels of IFN-ß [Effect size (ES): -0.84, p = 0.030] and IFN-λ (ES: -1.00, p = 0.002), and PBECs from adult atopic asthmatics produced significantly lower levels of IFN-ß (ES: -0.68, p = 0.009), compared to healthy subjects after RV infection. A trend towards a deficient production of IFN-γ (ES: -0.56, p = 0.060) in PBMCs from adult atopic asthmatics was observed. In lower airways, asthmatics also had significantly lower baseline IL-15 (ES: -0.69, p = 0.020) levels. CONCLUSION: Overall, RV-induced asthma exacerbations are potentially caused by an imbalance between Th1 and Th2 cytokines, which may be contributed by defective innate immune responses at cellular levels. Exogenous IFNs delivery may be beneficial as a prophylactic approach for RV-induced asthma exacerbations. SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=184119, identifier CRD42020184119.


Subject(s)
Asthma , Cytokines , Enterovirus Infections , Hypersensitivity, Immediate , Picornaviridae Infections , Adult , Child , Cytokines/immunology , Cytokines/metabolism , Humans , Leukocytes, Mononuclear , Picornaviridae Infections/complications , Picornaviridae Infections/metabolism , Rhinovirus
7.
PeerJ ; 10: e12850, 2022.
Article in English | MEDLINE | ID: mdl-35291487

ABSTRACT

Background: Leptospirosis is a zoonotic disease caused by bacteria of the genus Leptospira that affects both humans and animals worldwide. Early detection of the pathogen in humans is crucial for early intervention and control of the progression of the disease to a severe state. It is also vitally important to be able to detect the presence of the pathogen in carrier animals to control the spread of the disease from the environment. Here we developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay targeting the leptospiral secY gene. Results: Several reaction conditions of the LAMP reaction were optimized to ensure efficient amplification of the target DNA. The sensitivity of the developed LAMP assay obtained using a pure Leptospira culture was 2 × 104 copies of genomic DNA per reaction (equivalent to 0.1 ng) for a 40-minute reaction time. No cross-reactions were observed in the LAMP reaction against a series of non-leptospiral bacteria, indicating a specific reaction. The applicability of the LAMP assay was demonstrated on human blood and urine specimens collected from suspected leptospirosis patients and rat kidney specimens collected from suspected leptospirosis outbreak areas and high-risk areas. The developed LAMP assay demonstrated a higher detection rate for leptospiral DNA compared with the polymerase chain reaction (PCR) assay, possibly due to the presence of inhibitory substances, especially in rat kidney specimens, to which the PCR method is more susceptible. The present findings also highlight the importance of urine sample collection from patients for routine monitoring of the disease. Conclusions: In short, the developed LAMP assay can serve as a feasible alternative tool for the diagnosis of leptospirosis and be used for epidemiological and environmental surveillance of the disease, considering its robustness, rapidity, sensitivity, and specificity, as demonstrated in this study.


Subject(s)
Leptospira , Leptospirosis , Animals , Humans , Sensitivity and Specificity , Leptospirosis/diagnosis , Leptospira/genetics , Polymerase Chain Reaction , Zoonoses/diagnosis
8.
Article in English | MEDLINE | ID: mdl-34639593

ABSTRACT

(1) Background: Lack of food safety awareness and preventive behaviour when dining out increases the risk of food poisoning. Furthermore, food poisoning cases among rural communities have been rising in recent years. However, the health-related mobile application is a promising tool in improving food poisoning prevention knowledge, attitude, practice, and perception (KAP2) among consumers. Therefore, the current study developed a novel smartphone app, MyWarung©, and determined its efficacy in increasing awareness, attitude, practice, and perception of food poisoning and its prevention when dining out, especially among rural consumers. (2) Methods: A quasi-experimental pre-and post-intervention study with a control and intervention group were performed on 100 consumers in Terengganu. (3) Results: The intervention's inter-group outcomes were analysed using the Mann-Whitney test, while the within-group effects were ascertained using the Wilcoxon sign rank test via the SPSS software. It was found that the control group had higher median scores in knowledge (30.0, IQR 7.0), attitude (46.0, IQR 5.0), and practice (34.0, IQR 3.0) than the intervention group before intervention. After the intervention programme, the intervention group showed significant improvement in food poisoning knowledge (p = 0.000), attitude (p = 0.001), and practice (p = 0.000). However, the intervention group's perceived barriers (p = 0.129) and susceptibility (p = 0.069) and the control group's perceived barriers (p = 0.422) did not show any significant improvement. (4) Conclusion: The findings indicated that the MyWarung© mobile app usage enhanced the food poisoning knowledge, preventive attitude, and practice among consumers when dining out.


Subject(s)
Foodborne Diseases , Mobile Applications , Foodborne Diseases/prevention & control , Health Knowledge, Attitudes, Practice , Humans , Perception , Smartphone
9.
Front Cell Dev Biol ; 9: 637270, 2021.
Article in English | MEDLINE | ID: mdl-34291043

ABSTRACT

Extensive clinical efforts have been made to control the severity of dengue diseases; however, the dengue morbidity and mortality have not declined. Dengue virus (DENV) can infect and cause systemic damage in many organs, resulting in organ failure. Here, we present a novel report showing a tailored stem-cell-based therapy that can aid in viral clearance and rescue liver cells from further damage during dengue infection. We administered a combination of hematopoietic stem cells and endothelial progenitor cells in a DENV-infected BALB/c mouse model and found that delivery of this cell cocktail had improved their liver functions, confirmed by hematology, histopathology, and next-generation sequencing. These stem and progenitor cells can differentiate into target cells and repair the damaged tissues. In addition, the regime can regulate endothelial proliferation and permeability, modulate inflammatory reactions, enhance extracellular matrix production and angiogenesis, and secrete an array of growth factors to create an enhanced milieu for cell reparation. No previous study has been published on the treatment of dengue infection using stem cells combination. In conclusion, dengue-induced liver damage was rescued by administration of stem cell therapy, with less apoptosis and improved repair and regeneration in the dengue mouse model.

10.
Int J Mol Sci ; 22(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672018

ABSTRACT

Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) 'a' determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (ß)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.


Subject(s)
Capsid Proteins/immunology , Cytokines/metabolism , Hepatitis B Vaccines/immunology , Hepatitis B virus/immunology , Immunodominant Epitopes/immunology , Nodaviridae/immunology , Signal Transduction/immunology , Vaccination/methods , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B Vaccines/administration & dosage , Hot Temperature , Mice , Mice, Inbred BALB C , Sf9 Cells , Spodoptera , Vaccines, Virus-Like Particle/administration & dosage
12.
Asian Biomed (Res Rev News) ; 15(4): 183-189, 2021 Aug.
Article in English | MEDLINE | ID: mdl-37551329

ABSTRACT

Background: Loop-mediated isothermal amplification (LAMP) is one of the most promising tools for rapidly detecting Leptospira spp. However, LAMP is hampered by cold storage to maintain the enzymatic activity of Bst DNA polymerase. Objective: To overcome the drawback of cold storage requirement for LAMP reagents we modified the reagents by adding sucrose as stabilizer. We then sought to determine the stability at room temperature of the premixed LAMP reagents containing sucrose. Method: Premixed LAMP reagents with sucrose and without sucrose were prepared. The prepared mixtures were stored at room temperature for up to 60 days, and were subjected to LAMP reactions at various intervals using rat kidney samples to detect leptospiral DNA. Results: The premixed LAMP reagents with sucrose remained stable for 45 days while sucrose-free premixed LAMP reagents showed no amplification from day 1 of storage at room temperature up to day 14. Conclusion: The LAMP reagent system can be refined by using sucrose as stabilizer, thus allowing their storage at room temperature without the need for cold storage. The modified method enables greater feasibility of LAMP for field surveillance and epidemiology in resource-limited settings.

13.
Vaccines (Basel) ; 8(2)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512923

ABSTRACT

Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus "a" determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.

14.
PLoS Negl Trop Dis ; 14(2): e0008074, 2020 02.
Article in English | MEDLINE | ID: mdl-32049960

ABSTRACT

BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples. METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution. CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.


Subject(s)
DNA, Bacterial/genetics , Leptospira/genetics , Leptospira/isolation & purification , Leptospirosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Animals , Genetic Markers , Humans
15.
Turk J Chem ; 44(5): 1395-1409, 2020.
Article in English | MEDLINE | ID: mdl-33488239

ABSTRACT

A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.

16.
Sci Rep ; 9(1): 13483, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530893

ABSTRACT

The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.


Subject(s)
Biosensing Techniques , Dendrimers , Dengue/diagnosis , Optical Fibers , Bioengineering , Dengue/virology , Dengue Virus , Female , Humans , Male , Microscopy, Atomic Force , Spectrum Analysis, Raman , Viral Proteins/analysis
17.
Biosci Rep ; 39(6)2019 06 28.
Article in English | MEDLINE | ID: mdl-31110077

ABSTRACT

Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both ß-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.


Subject(s)
Acetophenones/pharmacology , Cell Degranulation/drug effects , Dengue/immunology , Mast Cells/drug effects , Phloroglucinol/analogs & derivatives , Acetophenones/chemistry , Animals , Cell Degranulation/immunology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Dengue/metabolism , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Ketotifen/chemistry , Ketotifen/pharmacology , Mast Cells/immunology , Mast Cells/physiology , Molecular Structure , Phloroglucinol/chemistry , Phloroglucinol/pharmacology , Rats , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Vero Cells , beta-N-Acetylhexosaminidases/immunology , beta-N-Acetylhexosaminidases/metabolism
18.
Viruses ; 11(4)2019 04 09.
Article in English | MEDLINE | ID: mdl-30970587

ABSTRACT

Recent evidence has demonstrated that dengue virus requires active filopodia formation for a successful infection. However, the cellular factor involved in the interaction has not been fully elucidated. We used a combination of virus overlay protein binding assay and LC-MS/MS, and identified annexin II as a dengue virus serotype 2 (DENV2) interacting protein on Vero cells, upon filopodia induction. Flow cytometry analysis showed annexin II on the Vero cells surface increased when DENV2 was added. The amount of annexin II in the plasma membrane fraction was reduced as the infection progressed. Antibody-mediated inhibition of infection and siRNA-mediated knockdown of annexin II expression significantly reduced DENV2 infection and production levels. Collectively, we demonstrated that annexin II is one of the host factor involved in DENV2 binding on Vero cells.


Subject(s)
Annexin A2/metabolism , Dengue Virus/physiology , Host-Pathogen Interactions , Virus Attachment , Animals , Chlorocebus aethiops , Vero Cells
19.
Rev Med Virol ; 29(3): e2038, 2019 05.
Article in English | MEDLINE | ID: mdl-30746844

ABSTRACT

Annexin A2 is a membrane scaffolding and binding protein, which mediated various cellular events. Its functions are generally affected by cellular localization. In the cytoplasm, they interacted with different phospholipid membranes in Ca2+ -dependent manner and play vital roles including actin binding, remodeling and dynamics, cytoskeletal rearrangement, and lipid-raft microdomain formation. However, upon cell exposure to certain stimuli, annexin A2 translocates to the external leaflets of the plasma membrane where annexin A2 was recently reported to serve as a virus receptor, play an important role in the formation of virus replication complex, or implicated in virus assembly and budding. Here, we review some of annexin A2 roles in virus infections and the potentiality of targeting annexin A2 in the design of novel and promising antivirus agent that may have a broader consequence in virus therapy.


Subject(s)
Annexin A2/metabolism , Cell Membrane/metabolism , Host-Pathogen Interactions , Virus Physiological Phenomena , Animals , Humans , Plants , Receptors, Virus/metabolism , Virus Assembly , Virus Release , Virus Replication
20.
Trop Med Infect Dis ; 4(1)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30781369

ABSTRACT

BACKGROUND: Dengue has affected more than one-third of the world population and Malaysia has recorded an increase in the number of dengue cases since 2012. Selangor state recorded the highest number of dengue cases in Malaysia. Most of the dengue infections occur among people living in hotspot areas of dengue. This study aims to compare Knowledge, Attitude, and Practice among communities living in hotspot and non-hotspot dengue areas. METHOD: Communities living in 20 hotspot and 20 non-hotspot areas in Selangor were chosen in this study where 406 participants were randomly selected to answer questionnaires distributed at their housing areas. Total marks of each categories were compared using t-test. RESULT: Results show that there were significant mean differences in marks in Knowledge (p value: 0.003; 15.41 vs. 14.55) and Attitude (p value: < 0.001; 11.41 vs. 10.33), but not Practice (p value 0.101; 10.83 vs. 10.47) categories between communities of non-hotspot and hotspot areas. After considering two confounding variables which are education level and household income, different mean marks are found to be significant in Knowledge when education level acts as a covariate and Attitude when both act as covariates. CONCLUSION: Overall results show that people living in non-hotspot areas had better knowledge and attitude than people living in hotspot areas, but no difference was found in practice. This suggests that public health education should be done more frequently with people with a low education background and low household income, especially in hotspot areas to fight dengue outbreak and make dengue cases decrease effectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...