Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 87(4): 675-691, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38442031

ABSTRACT

Schwarzinicines A-D, a series of alkaloids recently discovered from Ficus schwarzii, exhibit pronounced vasorelaxant activity in rat isolated aorta. Building on this finding, a concise synthesis of schwarzinicines A and B has been reported, allowing further investigations into their biological properties. Herein, a preliminary exploration of the chemical space surrounding the structure of schwarzinicine A (1) was carried out aiming to identify structural features that are essential for vasorelaxant activity. A total of 57 analogs were synthesized and tested for vasorelaxant activity in rat isolated aorta. Both efficacy (Emax) and potency (EC50) of these analogs were compared. In addition to identifying structural features that are required for activity or associated with potency enhancement effect, four analogs showed significant potency improvements of up to 40.2-fold when compared to 1. Molecular dynamics simulation of a tetrameric 44-bound transient receptor potential canonical-6 (TRPC6) protein indicated that 44 could potentially form important interactions with the residues Glu509, Asp530, Lys748, Arg758, and Tyr521. These results may serve as a foundation for guiding further structural optimization of the schwarzinicine A scaffold, aiming to discover even more potent analogs.


Subject(s)
Vasodilator Agents , Vasodilator Agents/pharmacology , Vasodilator Agents/chemistry , Vasodilator Agents/chemical synthesis , Animals , Structure-Activity Relationship , Rats , Molecular Structure , Ficus/chemistry , Aorta/drug effects , Alkaloids/pharmacology , Alkaloids/chemistry , Male , Molecular Dynamics Simulation
2.
Sci Rep ; 13(1): 8958, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268726

ABSTRACT

CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.


Subject(s)
Apyrase , Humans , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Apyrase/chemistry , Apyrase/metabolism , Uridine Diphosphate
3.
Int J Mol Sci ; 24(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37108523

ABSTRACT

Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Biological Assay , Drug Discovery , Ligands , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Mitogen-Activated Protein Kinase 12/metabolism
4.
J Biomol Struct Dyn ; 41(6): 2146-2159, 2023 04.
Article in English | MEDLINE | ID: mdl-35067186

ABSTRACT

The Human Immunodeficiency Virus (HIV) infection is a global pandemic that has claimed 33 million lives to-date. One of the most efficacious treatments for naïve or pretreated HIV patients is the HIV integrase strand transfer inhibitors (INSTIs). However, given that HIV treatment is life-long, the emergence of HIV strains resistant to INSTIs is an imminent challenge. In this work, we showed two best regression QSAR models that were constructed using a boosted Random Forest algorithm (r2 = 0.998, q210CV = 0.721, q2external_test = 0.754) and a boosted K* algorithm (r2 = 0.987, q210CV = 0.721, q2external_test = 0.758) to predict the pIC50 values of INSTIs. Subsequently, the regression QSAR models were deployed against the Drugbank database for drug repositioning. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies and accelerated Molecular Dynamics simulation. Lastly, their potential as INSTIs were also evaluated from our literature search. Our study offers the first example of a large-scale regression QSAR modelling effort for discovering highly active INSTIs to combat HIV infection.Communicated by Ramaswamy H. Sarma.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Humans , Molecular Docking Simulation , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacology , Drug Repositioning
5.
Front Microbiol ; 12: 790742, 2021.
Article in English | MEDLINE | ID: mdl-34867929

ABSTRACT

Pseudomonas aeruginosa (PA) depends on the Entner-Doudoroff pathway (EDP) for glycolysis. The main enzymatic regulator in the lower half of the EDP is pyruvate kinase. PA contains genes that encode two isoforms of pyruvate kinase, denoted PykAPA and PykFPA. In other well-characterized organisms containing two pyruvate kinase isoforms (such as Escherichia coli) each isozyme is differentially regulated. The structure, function and regulation of PykAPA has been previously characterized in detail, so in this work, we set out to assess the biochemical and structural properties of the PykFPA isozyme. We show that pykF PA expression is induced in the presence of the diureide, allantoin. In spite of their relatively low amino acid sequence identity, PykAPA and PykFPA display broadly comparable kinetic parameters, and are allosterically regulated by a very similar set of metabolites. However, the x-ray crystal structure of PykFPA revealed significant differences compared with PykAPA. Notably, although the main allosteric regulator binding-site of PykFPA was empty, the "ring loop" covering the site adopted a partially closed conformation. Site-directed mutation of the proline residues flanking the ring loop yielded apparent "locked on" and "locked off" allosteric activation phenotypes, depending on the residue mutated. Analysis of PykFPA inter-protomer interactions supports a model in which the conformational transition(s) accompanying allosteric activation involve re-orientation of the A and B domains of the enzyme and subsequent closure of the active site.

6.
J Biol Chem ; 294(42): 15505-15516, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31484721

ABSTRACT

Unlike many other well-characterized bacteria, the opportunistic human pathogen Pseudomonas aeruginosa relies exclusively on the Entner-Doudoroff pathway (EDP) for glycolysis. Pyruvate kinase (PK) is the main "pacemaker" of the EDP, and its activity is also relevant for P. aeruginosa virulence. Two distinct isozymes of bacterial PK have been recognized, PykA and PykF. Here, using growth and expression analyses of relevant PK mutants, we show that PykA is the dominant isoform in P. aeruginosa Enzyme kinetics assays revealed that PykA displays potent K-type allosteric activation by glucose 6-phosphate and by intermediates from the pentose phosphate pathway. Unexpectedly, the X-ray structure of PykA at 2.4 Å resolution revealed that glucose 6-phosphate binds in a pocket that is distinct from the binding site reported for this metabolite in the PK from Mycobacterium tuberculosis (the only other available bacterial PK structure containing bound glucose 6-phosphate). We propose a mechanism by which glucose 6-phosphate binding at the allosteric site communicates with the PykA active site. Taken together, our findings indicate remarkable evolutionary plasticity in the mechanism(s) by which PK senses and responds to allosteric signals.


Subject(s)
Bacterial Proteins/chemistry , Pseudomonas aeruginosa/enzymology , Pyruvate Kinase/chemistry , Allosteric Regulation , Allosteric Site , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Glucose-6-Phosphate/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Pentose Phosphate Pathway , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
7.
Sci Rep ; 9(1): 2454, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792485

ABSTRACT

Inositol 1, 4, 5-trisphosphate (IP3) binding at the N-terminus (NT) of IP3 receptor (IP3R) allosterically triggers the opening of a Ca2+-conducting pore located ~100 Å away from the IP3-binding core (IBC). However, the precise mechanism of IP3 binding and correlated domain dynamics in the NT that are central to the IP3R activation, remains unknown. Our all-atom molecular dynamics (MD) simulations recapitulate the characteristic twist motion of the suppressor domain (SD) and reveal correlated 'clam closure' dynamics of IBC with IP3-binding, complementing existing suggestions on IP3R activation mechanism. Our study further reveals the existence of inter-domain dynamic correlation in the NT and establishes the SD to be critical for the conformational dynamics of IBC. Also, a tripartite interaction involving Glu283-Arg54-Asp444 at the SD - IBC interface seemed critical for IP3R activation. Intriguingly, during the sub-microsecond long simulation, we observed Arg269 undergoing an SD-dependent flipping of hydrogen bonding between the first and fifth phosphate groups of IP3. This seems to play a major role in determining the IP3 binding affinity of IBC in the presence/absence of the SD. Our study thus provides atomistic details of early molecular events occurring within the NT during and following IP3 binding that lead to channel gating.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Allosteric Regulation , Animals , Calcium/metabolism , Hydrogen Bonding , Mice , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
8.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1151-1161, 2019 07.
Article in English | MEDLINE | ID: mdl-30408544

ABSTRACT

Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Antiviral Agents/pharmacology , Calcium Channels/metabolism , Ebolavirus/metabolism , Lysosomes/metabolism , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Calcium Channels/genetics , Drug Evaluation , Ebolavirus/genetics , HEK293 Cells , Humans , Lysosomes/genetics , Lysosomes/virology , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Sea Urchins
9.
Biochemistry ; 56(41): 5539-5549, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28985053

ABSTRACT

Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization because of the dwindling number of effective therapies available to treat infections. Over the past decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologues found in other clinically relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.


Subject(s)
Bacterial Proteins/metabolism , Malate Synthase/metabolism , Models, Molecular , Pseudomonas aeruginosa/enzymology , Acetyl Coenzyme A/chemistry , Acetyl Coenzyme A/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Computational Biology , Conserved Sequence , Crystallography, X-Ray , Expert Systems , Glyoxylates/chemistry , Glyoxylates/metabolism , Indoles/chemistry , Indoles/metabolism , Ligands , Magnesium/chemistry , Magnesium/metabolism , Malate Synthase/chemistry , Malate Synthase/genetics , Molecular Docking Simulation , Molecular Structure , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...