Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
mBio ; 5(3): e01193-14, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24895307

ABSTRACT

UNLABELLED: Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described "atypical" functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709-19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. IMPORTANCE: Nitrous oxide (N2O) is a potent greenhouse gas with ozone layer destruction potential. Microbial activities control both the production and the consumption of N2O, i.e., its conversion to innocuous dinitrogen gas (N2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change.


Subject(s)
Metagenome , Oxidoreductases/genetics , Soil Microbiology , Soil/chemistry , Algorithms , Computational Biology/methods , Nitrogen Cycle , Nitrous Oxide , Phylogeny
2.
Appl Environ Microbiol ; 73(15): 4813-23, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17545324

ABSTRACT

To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tc(r)) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tc(r) genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tc(r) genes was quantified by real-time quantitative PCR. To confirm the Tc(r) gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tc(r) genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tc(r) genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool.


Subject(s)
Animal Husbandry , Fresh Water/chemistry , Genes, Bacterial , Swine , Tetracycline Resistance/genetics , Animals , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Fresh Water/microbiology , Manure , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Appl Environ Microbiol ; 68(4): 1786-93, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11916697

ABSTRACT

Phylogenetic analysis of tetracycline resistance genes, which confer resistance due to the efflux of tetracycline from the cell catalyzed by drug:H(+) antiport and share a common structure with 12 transmembrane segments (12-TMS), suggested the monophyletic origin of these genes. With a high degree of confidence, this tet subcluster unifies 11 genes encoding tet efflux pumps and includes tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(Y), tet(Z), and tet(30). Phylogeny-aided alignments were used to design a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources. After rigorous validation with the characterized control tet templates, this primer set was used to determine the genotype of the corresponding tetracycline resistance genes in total DNA of swine feed and feces and in the lagoons and groundwater underlying two large swine production facilities known to be impacted by waste seepage. The compounded tet fingerprint of animal feed was found to be tetCDEHZ, while the corresponding fingerprint of total intestinal microbiota was tetBCGHYZ. Interestingly, the tet fingerprints in geographically distant waste lagoons were identical (tetBCEHYZ) and were similar to the fecal fingerprint at the third location mentioned above. Despite the sporadic detection of chlortetracycline in waste lagoons, no auxiliary diversity of tet genes in comparison with the fecal diversity could be detected, suggesting that the tet pool is generated mainly in the gut of tetracycline-fed animals, with a negligible contribution from selection imposed by tetracycline that is released into the environment. The tet efflux genes were found to be percolating into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. With yet another family of tet genes, this study confirmed our earlier findings that the antibiotic resistance gene pool generated in animal production systems may be mobile and persistent in the environment with the potential to enter the food chain.


Subject(s)
Bacterial Proteins/genetics , DNA Primers , Genes, Bacterial , Gram-Negative Bacteria/drug effects , Polymerase Chain Reaction/methods , Tetracycline Resistance/genetics , Tetracycline/metabolism , Animal Feed , Animal Husbandry , Animals , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Feces , Fresh Water , Gram-Negative Bacteria/genetics , Swine , Tetracycline/pharmacology , Waste Disposal, Fluid
4.
Appl Environ Microbiol ; 67(4): 1494-502, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282596

ABSTRACT

In this study, we used PCR typing methods to assess the presence of tetracycline resistance determinants conferring ribosomal protection in waste lagoons and in groundwater underlying two swine farms. All eight classes of genes encoding this mechanism of resistance [tet(O), tet(Q), tet(W), tet(M), tetB(P), tet(S), tet(T), and otrA] were found in total DNA extracted from water of two lagoons. These determinants were found to be seeping into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. The identities and origin of these genes in groundwater were confirmed by PCR-denaturing gradient gel electrophoresis and sequence analyses. Tetracycline-resistant bacterial isolates from groundwater harbored the tet(M) gene, which was not predominant in the environmental samples and was identical to tet(M) from the lagoons. The presence of this gene in some typical soil inhabitants suggests that the vector of antibiotic resistance gene dissemination is not limited to strains of gastrointestinal origin carrying the gene but can be mobilized into the indigenous soil microbiota. This study demonstrated that tet genes occur in the environment as a direct result of agriculture and suggested that groundwater may be a potential source of antibiotic resistance in the food chain.


Subject(s)
Animal Husbandry , Fresh Water/microbiology , Swine , Tetracycline Resistance/genetics , Waste Disposal, Fluid , Animals , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel/methods , Genes, Bacterial , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Positive Cocci/classification , Gram-Positive Cocci/drug effects , Gram-Positive Cocci/genetics , Gram-Positive Cocci/isolation & purification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics
5.
Water Res ; 35(4): 891-900, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11235884

ABSTRACT

Biological removal of the ozonation by-product, bromate, was demonstrated in biologically active carbon (BAC) filters. For example, with a 20-min EBCT, pH 7.5, and influent dissolved oxygen (DO) and nitrate concentrations 2.1 and 5.1 mg/l, respectively, 40% bromate removal was obtained with a 20 microg/l influent bromate concentration. In this study, DO, nitrate and sulfate concentrations, pH, and type of source water were evaluated for their effect on bromate removal in a BAC filter. Bromate removal decreased as the influent concentrations of DO and nitrate increased, but bromate removal was observed in the presence of measurable effluent concentrations of DO and nitrate. In contrast, bromate removal was not sensitive to the influent sulfate concentration, with only a slight reduction in bromate removal as the influent sulfate concentration was increased from 11.1 to 102.7 mg/l. Bromate reduction was better at lower pH values (6.8 and 7.2) than at higher pH values (7.5 and 8.2), suggesting that it may be possible to reduce bromate formation during ozonation and increase biological bromate reduction through pH control. Biological bromate removal in Lake Michigan water was very poor as compared to that in tapwater from a groundwater source. Bromate removal improved when sufficient organic electron donor was added to remove the nitrate and DO present in the Lake Michigan water, indicating that the poor biodegradability of the natural organic matter may have been limiting bromate removal in that water. Biological bromate removal was demonstrated to be a sustainable process under a variety of water quality conditions, and bromate removal can be improved by controlling key water quality parameters.


Subject(s)
Bromates/isolation & purification , Water Supply/analysis , Carbon , Disinfectants , Filtration/instrumentation , Hydrogen-Ion Concentration , Nitrates , Oxygen , Ozone , Sulfates , Water Purification/methods , Water Supply/standards
6.
Appl Environ Microbiol ; 66(4): 1595-601, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10742247

ABSTRACT

Pure bacterial cultures were isolated from a highly enriched denitrifying consortium previously shown to anaerobically biodegrade naphthalene. The isolates were screened for the ability to grow anaerobically in liquid culture with naphthalene as the sole source of carbon and energy in the presence of nitrate. Three naphthalene-degrading pure cultures were obtained, designated NAP-3-1, NAP-3-2, and NAP-4. Isolate NAP-3-1 tested positive for denitrification using a standard denitrification assay. Neither isolate NAP-3-2 nor isolate NAP-4 produced gas in the assay, but both consumed nitrate and NAP-4 produced significant amounts of nitrite. Isolates NAP-4 and NAP-3-1 transformed 70 to 90% of added naphthalene, and the transformation was nitrate dependent. No significant removal of naphthalene occurred under nitrate-limited conditions or in cell-free controls. Both cultures exhibited partial mineralization of naphthalene, representing 7 to 20% of the initial added (14)C-labeled naphthalene. After 57 days of incubation, the largest fraction of the radiolabel in both cultures was recovered in the cell mass (30 to 50%), with minor amounts recovered as unknown soluble metabolites. Nitrate consumption, along with the results from the (14)C radiolabel study, are consistent with the oxidation of naphthalene coupled to denitrification for NAP-3-1 and nitrate reduction to nitrite for NAP-4. Phylogenetic analyses based on 16S ribosomal DNA sequences of NAP-3-1 showed that it was closely related to Pseudomonas stutzeri and that NAP-4 was closely related to Vibrio pelagius. This is the first report we know of that demonstrates nitrate-dependent anaerobic degradation and mineralization of naphthalene by pure cultures.


Subject(s)
Bacteria, Anaerobic/isolation & purification , Bacteria, Anaerobic/metabolism , Naphthalenes/metabolism , Nitrates/metabolism , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Biodegradation, Environmental , Carbon Radioisotopes/analysis , Culture Media , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Hydrocarbons, Aromatic/metabolism , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Water Microbiology , Water Pollutants, Chemical/metabolism
7.
Appl Environ Microbiol ; 62(3): 964-73, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8975623

ABSTRACT

A toluene-degrading denitrifier, Azoarcus tolulyticus Tol-4, was one of eight similar strains isolated from three petroleum-contaminated aquifer sediments. When the strain was grown anaerobically on toluene, 68% of the carbon from toluene was found as CO2 and 30% was found as biomass. Strain Tol-4 had a doubling time of 4.3 h, a Vmax of 50 micromol x min-1 x g of protein-1, and a cellular yield of 49.6 g x mol of toluene-1. Benzoate appeared to be an intermediate, since F-benzoates accumulated from F-toluenes and [14C]benzoate was produced from [14C]toluene in the presence of excess benzoate. Two metabolites, E-phenylitaconic acid (1 to 2%) and benzylsuccinic acid (<1%), accumulated from anaerobic toluene metabolism. These same products were also produced when cells were grown on hydrocinnamic acid and trans-cinnamic acid but were not produced from benzylalcohol, benzaldehyde, benzoate, p-cresol, or their hydroxylated analogs. The evidence supports an anaerobic toluene degradation pathway involving an initial acetyl coenzyme A (acetyl-CoA) attack in strain Tol-4, as proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for another toluene-degrading denitrifier, strain T1. Our findings support a modification of the proposed pathway in which cinnamoyl-CoA follows the oxidation of hydrocinnamoyl-CoA, analogous to the presumed oxidation of benzylsuccinic acid to form E-phenylitaconic acid. Cinnamic acid was detected in Tol-4 cultures growing in the presence of toluene and [14C]acetate. We further propose a second acetyl-CoA addition to cinnamoyl-CoA as the source of benzylsuccinic acid and E-phenylitaconic acid. This pathway is supported by the finding that monofluoroacetate added to toluene-growing cultures resulted in a significant increase in production of benzylsuccinic acid and E-phenylitaconic acid and by the finding that [14C]benzylsuccinic acid was detected after incubation of cells with toluene, [14C]acetate, and cinnamic acid. Evidence for anaerobic toluene metabolism by methyl group oxidation was not found, since benzylsuccinic acid and E-phenylitaconic acid were not detected after incubation with benzylalcohol and benzaldehyde, nor were benzylalcohol and benzaldehyde detected even in 14C trapping experiments.


Subject(s)
Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Gram-Negative Facultatively Anaerobic Rods/enzymology , Nitrogen Fixation , Toluene/metabolism , Biodegradation, Environmental
8.
Appl Environ Microbiol ; 62(3): 974-8, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8975624

ABSTRACT

E-Phenylitaconic acid has been isolated as a metabolite generated by Azoarcus tolulyticus Tol-4 along with benzylsuccinic acid during anaerobic degradation of toluene. Strain Tol-4 converted 1 to 2% of toluene carbon to E-phenylitaconate and benzylsuccinate (10:1). The identification of E-phenylitaconic acid was based on 1H nuclear magnetic resonance (NMR) characterization of degradation products derived from 13C-labeled toluene followed by comparison of spectroscopic and chromatographic data for the isolated, unlabeled metabolite with those for chemically synthesized benzylfumaric acid, benzylmaleic acid, E-phenylitaconic acid, and Z-phenylitaconic acid. Spectroscopic comparisons included 1H NMR, 13C NMR, and nuclear overhauser effect correlations. High-pressure liquid chromatography (HPLC) retention times and HPLC coinjections with synthetic dioic acids provided another reliable line of evidence for structure assignment. The formation of E-phenylitaconic acid differs from previous reports of benzylfumaric acid generation along with benzylsuccinic acid during anaerobic microbial degradation of toluene. This has important implications relevant to elaboration of the metabolic route for anaerobic toluene degradation by strain Tol-4 and related organisms. Similar amounts of E-phenylitaconic acid were also produced by seven other strains of A. tolulyticus.


Subject(s)
Benzyl Compounds/metabolism , Benzylidene Compounds/metabolism , Fumarates/metabolism , Gram-Negative Facultatively Anaerobic Rods/metabolism , Maleates/metabolism , Nitrogen Fixation , Succinates/metabolism , Toluene/metabolism , Biodegradation, Environmental
9.
Int J Syst Bacteriol ; 45(3): 500-6, 1995 Jul.
Article in English | MEDLINE | ID: mdl-8590677

ABSTRACT

To understand the phylogeny and taxonomy of eight new toluene-degrading denitrifying isolates, we performed a 16S rRNA sequence analysis and a gas chromatographic analysis of their cellular fatty acids and examined some of their biochemical and physiological features. These isolates had 16s rRNA sequence signatures identical to those of members of the beta subclass of the Proteobacteria. The levels of similarity were as follows: 97.9 to 99.9% among the new isolates; 91.2 to 92.4% between the new isolates and Azoarcus sp. strain S5b2; 95.3 to 96.2% between the new isolates and Azoarcus sp. strain BH72; and 94.8 to 95.3% between the new isolates and Azoarcus indigens VB32T (T = type strain). Phylogenetic trees constructed by using the distance matrix, maximum-parsimony, and maximum-likelihood methods showed that our eight denitrifying isolates form a phylogenetically coherent cluster which represents a sister lineage of the previously described Azoarcus species. Furthermore, the fatty acid profiles, the cell morphology, and several physiological and nutritional characteristics of the eight isolates and the previously described members of the genus Azoarcus were also similar. In contrast to the previously described members of the genus Azoarcus, the eight new isolates were capable of degrading toluene under denitrifying conditions. We concluded that these toluene-degrading denitrifiers are members of a new species of the novel nitrogen-fixing genus Azoarcus. We propose the name Azoarcus tolulyticus for these toluene-degrading denitrifying isolates and designate strain Tol-4 the type strain.


Subject(s)
Gram-Negative Facultatively Anaerobic Rods/classification , Nitrogen Compounds/metabolism , Toluene/metabolism , Anaerobiosis , Base Sequence , Biological Evolution , Carbohydrate Metabolism , Catalase/metabolism , Consensus Sequence , Culture Media , Fatty Acids/chemistry , Gram-Negative Facultatively Anaerobic Rods/genetics , Gram-Negative Facultatively Anaerobic Rods/metabolism , Molecular Sequence Data , Nitrogen Fixation , Oxidoreductases/metabolism , Phylogeny , RNA, Ribosomal, 16S/chemistry , Sequence Homology, Nucleic Acid , Soil Microbiology
10.
Appl Environ Microbiol ; 60(8): 2802-10, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8085824

ABSTRACT

Enrichments capable of toluene degradation under O2-free denitrifying conditions were established with diverse inocula including agricultural soils, compost, aquifer material, and contaminated soil samples from different geographic regions of the world. Successful enrichment was strongly dependent on the initial use of relatively low toluene concentrations, typically 5 ppm. From the enrichments showing positive activity for toluene degradation, 10 bacterial isolates were obtained. Fingerprints generated by PCR-amplified DNA, with repetitive extragenic palindromic sequence primers, showed that eight of these isolates were different. Under aerobic conditions, all eight isolates degraded toluene, five degraded ethylbenzene, three consumed benzene, and one degraded chlorobenzene, meta-Xylene was the only other substrate used anaerobically and was used by only one isolate. All isolates were motile gram-negative rods, produced N2 from denitrification, and did not hydrolyze starch. All strains but one fixed nitrogen as judged by ethylene production from acetylene, but only four strains hybridized to the nifHDK genes. All strains appeared to have heme nitrite reductase since their DNA hybridized to the heme (nirS) but not to the Cu (nirU) genes. Five strains hybridized to a toluene ortho-hydroxylase catabolic probe, and two of those also hybridized to a toluene meta-hydroxylase probe. Partial sequences of the 16S rRNA genes of all isolates showed substantial similarity to 16S rRNA sequences of Azoarcus sp. Physiological, morphological, fatty acid, and 16S rRNA analyses indicated that these strains were closely related to each other and that they belong to the genus Azoarcus.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Gram-Negative Bacteria/metabolism , Soil Microbiology , Toluene/metabolism , Aerobiosis , Anaerobiosis , Benzene/metabolism , Benzene Derivatives/metabolism , Biodegradation, Environmental , DNA, Bacterial/analysis , Gram-Negative Bacteria/genetics , Molecular Sequence Data , Nitrogen Fixation , Phylogeny , RNA, Ribosomal, 16S/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Xylenes/metabolism
11.
Biodegradation ; 4(4): 231-40, 1993.
Article in English | MEDLINE | ID: mdl-7764920

ABSTRACT

Reductive dechlorination is an advantageous process to microorganisms under anaerobic conditions because it is an electron sink, thereby allowing reoxidation of metabolic intermediates. In some organisms this has been demonstrated to support growth. Many chlorinated compounds have now been shown to be reductively dechlorinated under anaerobic conditions, including many of the congeners in commercial PCB mixtures. Anaerobic microbial communities in sediments dechlorinate Aroclor at rates of 3 micrograms Cl/g sediment x week. PCB dechlorination occurs at 12 degrees C, a temperature relevant for remediation at temperate sites, and at concentrations of 100 to 1000 ppm. The positions dechlorinated are usually meta > para > ortho. The biphenyl rings, and the mono-ortho- and diorthochlorobiphenyls were not degraded after a one year incubation. Hence subsequent aerobic treatment may be necessary to meet regulatory standards. Reductive dechlorination of Aroclors does reduce their dioxin-like toxicity as measured by bioassay and by analysis of the co-planar congeners. The most important limitation to using PCB dechlorination as a remediation technology is the slower than desired dechlorination rates and no means yet discovered to substantially enhance these rates. Long term enrichments using PCBs as the only electron acceptor resulted in an initial enhancement in dechlorination rate. This rate was sustained but did not increase in serial transfers. Bioremediation of soil contaminated with Aroclor 1254 from a transformer spill was dechlorinated by greater than 50% following mixing of the soil with dechlorinating organisms and river sediment.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Bacteria, Anaerobic/metabolism , Polychlorinated Biphenyls/metabolism , Biodegradation, Environmental , Environmental Pollutants/metabolism , Oxidation-Reduction , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...