Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 78: 104121, 2020 03.
Article in English | MEDLINE | ID: mdl-31756512

ABSTRACT

Resistance to the mainstay antimalarial drugs is a major concern in the control of malaria. Delayed Plasmodium falciparum parasite clearance has been associated with Single Nucleotide Polymorphisms (SNPs) in the kelch propeller region (K13). However, SNPs in the Pf-adaptor protein complex 2 mu subunit (Pfap2-mu), Pfcrt and Pfmdr1 are possible markers associated with multi-drug resistance. Here, we explored the prevalence of SNPs in the K13, Pfap2-mu, Pfcrt, and Pfmdr1 in 94 dried blood spot field isolates collected from children aged below 12 years infected with P. falciparum during a cross-sectional study. The samples were collected in 2015 during the peak malaria transmission season in the Nyando region of Western Kenya before treatment with Artemether-Lumefantrine, the first-line artemisinin-based combination therapy (ACT) in Kenya. However, 47 of the 94 samples had recurrent parasitemia and were interrogated for the presence of the SNPs in K13 and Pfap2-mu. We used PCR amplification and sequencing to evaluate specific regions of K13 (codons 432-702), Pfap2-mu (codons 1-350), Pfmdr1 (codons 86, 1034-1246), and Pfcrt (codons 72-76) gene(s). The majority of parasites harbored the wild type K13 sequence. However, we found a unique non-synonymous W611S change. In silico studies on the impact of the W611S predicted structural changes in the overall topology of the K13 protein. Of the 47 samples analyzed for SNPs in the Pfap2-mu gene, 14 (29%) had S160 N/T mutation. The CVIET haplotype associated with CQ resistance in the Pfcrt yielded a 7.44% (7/94), while CVMNK haplotype was at 92.56%. Mutations in the Pfmdr1 region were detected only in three samples (3/94; 3.19%) at codon D1246Y. Our data suggest that parasites in the western part of Kenya harbor the wildtype strains. However, the detection of the unique SNP in K13 and Pfap2-mu linked with ACT delayed parasite clearance may suggest slow filtering of ACT-resistant parasites.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Microbial/genetics , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Child, Preschool , Humans , Infant , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Prevalence , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
2.
Malar J ; 18(1): 398, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31801562

ABSTRACT

BACKGROUND: The efficacy and safety of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) against asexual parasites population has been documented. However, the effect of these anti-malarials on sexual parasites is still less clear. Gametocyte clearance following treatment is essential for malaria control and elimination efforts; therefore, the study sought to determine trends in gametocyte clearance after AL or DP treatment in children from a malaria-endemic site in Kenya. METHODS: Children aged between 0.5 and 12 years from Busia, western Kenya with uncomplicated Plasmodium falciparum malaria were assigned randomly to AL or DP treatment. A total of 334 children were enrolled, and dried blood spot samples were collected for up to 6 weeks after treatment during the peak malaria transmission season in 2016 and preserved. Plasmodium falciparum gametocytes were detected by qRT-PCR and gametocyte prevalence, density and mean duration of gametocyte carriage were determined. RESULTS: At baseline, all the 334 children had positive asexual parasites by microscopy, 12% (40/334) had detectable gametocyte by microscopy, and 83.7% (253/302) children had gametocytes by RT-qPCR. Gametocyte prevalence by RT-qPCR decreased from 85.1% (126/148) at day 0 to 7.04% (5/71) at day 42 in AL group and from 82.4% (127/154) at day 0 to 14.5% (11/74) at day 42 in DP group. The average duration of gametocyte carriage as estimated by qRT-PCR was slightly shorter in the AL group (4.5 days) than in the DP group (5.1 days) but not significantly different (p = 0.301). CONCLUSION: The study identifies no significant difference between AL and DP in gametocyte clearance. Gametocytes persisted up to 42 days post treatment in minority of individuals in both treatment arms. A gametocytocidal drug, in combination with artemisinin-based combination therapy, will be useful in blocking malaria transmission more efficiently.


Subject(s)
Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Quinolines/therapeutic use , Child , Child, Preschool , Female , Humans , Infant , Kenya/epidemiology , Malaria, Falciparum/epidemiology , Male , Prevalence
3.
Trop Med Int Health ; 24(5): 647-656, 2019 05.
Article in English | MEDLINE | ID: mdl-30816614

ABSTRACT

Kenya has, in the last decade, made tremendous progress in the fight against malaria. Nevertheless, continued surveillance of the genetic diversity and population structure of Plasmodium falciparum is required to refine malaria control and to adapt and improve elimination strategies. Twelve neutral microsatellite loci were genotyped in 201 P. falciparum isolates obtained from the Kenyan-Ugandan border (Busia) and from two inland malaria-endemic sites situated in western (Nyando) and coastal (Msambweni) Kenya. Analyses were done to assess the genetic diversity (allelic richness and expected heterozygosity, [He ]), multilocus linkage disequilibrium ( ISA ) and population structure. A similarly high degree of genetic diversity was observed among the three parasite populations surveyed (mean He  = 0.76; P > 0.05). Except in Msambweni, random association of microsatellite loci was observed, indicating high parasite out-breeding. Low to moderate genetic structure (FST  = 0.022-0.076; P < 0.0001) was observed with only 5% variance in allele frequencies observed among the populations. This study shows that the genetic diversity of P. falciparum populations at the Kenyan-Ugandan border is comparable to the parasite populations from inland Kenya. In addition, high genetic diversity, panmixia and weak population structure in this study highlight the fitness of Kenyan P. falciparum populations to successfully withstand malaria control interventions.


Le Kenya a réalisé d'énormes progrès au cours de la dernière décennie dans la lutte contre le paludisme. Néanmoins, une surveillance continue de la diversité génétique et de la structure de la population de P. falciparum est nécessaire pour affiner la lutte contre le paludisme et pour adapter et améliorer les stratégies d'élimination. Douze loci microsatellites neutres ont été génotypés chez 201 isolats de P. falciparum provenant de la frontière entre le Kenya et l'Ouganda (Busia) et de deux sites d'endémie palustre situés dans l'ouest (Nyando) et sur la côte (Msambweni), au Kenya. Des analyses ont été effectuées pour évaluer la diversité génétique (richesse allélique et hétérozygotie attendue, ([He]), déséquilibre de parenté des multiple loci ( ISA ) et structure de la population. Un degré hautement similaire de diversité génétique a été observé parmi les trois populations de parasites étudiées (He = 0,76; P > 0,05). A l'exception de Msambweni, une association aléatoire entre les microsatellites a été observée, indiquant une forte reproduction des parasites. Une structure génétique faible à modérée (FST  = 0,022-0,076; P < 0,0001) a été observée avec seulement 5% de variance dans la fréquence des allèles observée parmi les populations. Cette étude montre que la diversité génétique des populations de P. falciparum à la frontière entre le Kenya et l'Ouganda est comparable à celle des populations de parasites à l'intérieur du Kenya. De plus, la diversité génétique élevée, la panmixia et la structure démographique faible dans cette étude soulignent l'aptitude des populations de P. falciparum du Kenya à résister aux interventions de lutte contre le paludisme.


Subject(s)
Alleles , Gene Frequency , Genetic Variation , Genotype , Malaria, Falciparum/parasitology , Microsatellite Repeats , Plasmodium falciparum/genetics , Communicable Disease Control , Genetics, Population , Humans , Kenya , Linkage Disequilibrium , Uganda
4.
Sci Rep ; 9(1): 1709, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737461

ABSTRACT

Plasmodium falciparum histidine-rich proteins 2 (PfHRP2) based RDTs are advocated in falciparum malaria-endemic regions, particularly when quality microscopy is not available. However, diversity and any deletion in the pfhrp2 and pfhrp3 genes can affect the performance of PfHRP2-based RDTs. A total of 400 samples collected from uncomplicated malaria cases from Kenya were investigated for the amino acid repeat profiles in exon 2 of pfhrp2 and pfhrp3 genes. In addition, PfHRP2 levels were measured in 96 individuals with uncomplicated malaria. We observed a unique distribution pattern of amino acid repeats both in the PfHRP2 and PfHRP3. 228 PfHRP2 and 124 PfHRP3 different amino acid sequences were identified. Of this, 214 (94%) PfHRP2 and 81 (65%) PfHRP3 amino acid sequences occurred only once. Thirty-nine new PfHRP2 and 20 new PfHRP3 amino acid repeat types were identified. PfHRP2 levels were not correlated with parasitemia or the number of PfHRP2 repeat types. This study shows the variability of PfHRP2, PfHRP3 and PfHRP2 concentration among uncomplicated malaria cases. These findings will be useful to understand the performance of PfHRP2-based RDTs in Kenya.


Subject(s)
Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Amino Acid Sequence , Antigens, Protozoan/metabolism , Diagnostic Tests, Routine , Evolution, Molecular , Exons , Humans , Kenya , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...