Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3950, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729959

ABSTRACT

Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Furthermore, the successful implementation of quantum error correction requires negligible correlated errors between qubits. Here, we realize long-lived superconducting transmon qubits that exhibit fluctuating lifetimes, averaging 0.2 ms and exceeding 0.4 ms - corresponding to quality factors above 5 million and 10 million, respectively. We then investigate their dominant error mechanism. By introducing novel time-resolved error measurements that are synchronized with the operation of the pulse tube cooler in a dilution refrigerator, we find that mechanical vibrations from the pulse tube induce nonequilibrium dynamics in highly coherent qubits, leading to their correlated bit-flip errors. Our findings not only deepen our understanding of the qubit error mechanisms but also provide valuable insights into potential error-mitigation strategies for achieving fault tolerance by decoupling superconducting qubits from their mechanical environments.

2.
Nature ; 612(7941): 666-672, 2022 12.
Article in English | MEDLINE | ID: mdl-36543952

ABSTRACT

Cavity optomechanics enables the control of mechanical motion through the radiation-pressure interaction1, and has contributed to the quantum control of engineered mechanical systems ranging from kilogramme-scale Laser Interferometer Gravitational-wave Observatory (LIGO) mirrors to nanomechanical systems, enabling ground-state preparation2,3, entanglement4,5, squeezing of mechanical objects6, position measurements at the standard quantum limit7 and quantum transduction8. Yet nearly all previous schemes have used single- or few-mode optomechanical systems. By contrast, new dynamics and applications are expected when using optomechanical lattices9, which enable the synthesis of non-trivial band structures, and these lattices have been actively studied in the field of circuit quantum electrodynamics10. Superconducting microwave optomechanical circuits2 are a promising platform to implement such lattices, but have been compounded by strict scaling limitations. Here we overcome this challenge and demonstrate topological microwave modes in one-dimensional circuit optomechanical chains realizing the Su-Schrieffer-Heeger model11,12. Furthermore, we realize the strained graphene model13,14 in a two-dimensional optomechanical honeycomb lattice. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode functions of the hybridized modes without using any local probe15,16. This enables us to reconstruct the full underlying lattice Hamiltonian and directly measure the existing residual disorder. Such optomechanical lattices, accompanied by the measurement techniques introduced, offer an avenue to explore collective17,18, quantum many-body19 and quench20 dynamics, topological properties9,21 and, more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedom22-24.

SELECTION OF CITATIONS
SEARCH DETAIL
...