Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 115: 104245, 2021 03.
Article in English | MEDLINE | ID: mdl-33310684

ABSTRACT

Cells sense and respond to the heterogeneous mechanical properties of their tissue microenvironment, with implications for the development of many diseases, including cancer, fibrosis, and aortic valve disease. Characterization of tissue mechanical heterogeneity on cellular length scales of tens of micrometers is thus important for understanding disease mechanobiology. In this study, we developed a low-cost bench-top microindentation system to readily map focal microscale soft tissue mechanical properties. The device was validated by comparison with atomic force microscopy nanoindentation of polyacrylamide gels. To demonstrate its utility, the device was used to measure the focal microscale elastic moduli of normal and diseased porcine aortic valve leaflet tissue. Consistent with previous studies, the fibrosa layer of intact leaflets was found to be 1.91-fold stiffer than the ventricularis layer, with both layers exhibiting significant heterogeneity in focal elastic moduli. For the first time, the microscale compressive moduli of focal proteoglycan-rich lesions in the fibrosa of early diseased porcine aortic valve leaflets were measured and found to be 2.44-fold softer than those of normal tissue. These data provide new insights into the tissue micromechanical environment in valvular disease and demonstrate the utility of the microindentation device for facile measurement of the focal mechanical properties of soft tissues.


Subject(s)
Aortic Valve , Animals , Biomechanical Phenomena , Microscopy, Atomic Force , Pressure , Stress, Mechanical , Swine
2.
J Cereb Blood Flow Metab ; 37(7): 2346-2358, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27618834

ABSTRACT

Stem cell therapy for neurological disorders reached a pivotal point when the efficacy of several cell types was demonstrated in small animal models. Translation of stem cell therapy is contingent upon overcoming the challenge of effective cell delivery to the human brain, which has a volume ∼1000 times larger than that of the mouse. Intra-arterial injection can achieve a broad, global, but also on-demand spatially targeted biodistribution; however, its utility has been limited by unpredictable cell destination and homing as dictated by the vascular territory, as well as by safety concerns. We show here that high-speed MRI can be used to visualize the intravascular distribution of a superparamagnetic iron oxide contrast agent and can thus be used to accurately predict the distribution of intra-arterial administered stem cells. Moreover, high-speed MRI enables the real-time visualization of cell homing, providing the opportunity for immediate intervention in the case of undesired biodistribution.


Subject(s)
Carotid Arteries/diagnostic imaging , Cell Tracking/methods , Cerebral Arteries/diagnostic imaging , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Stroke/therapy , Animals , Disease Models, Animal , Dogs , Infusions, Intra-Arterial , Male , Rats, Sprague-Dawley , Rats, Wistar , Species Specificity , Stroke/diagnostic imaging , Swine
3.
Tomography ; 2(2): 159-165, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27478872

ABSTRACT

We present a practical approach for co-registration of bioluminescence tomography (BLT), computed tomography (CT), and magnetic resonance (MR) images. To this end, we developed a customized animal shuttle composed of non-fluorescent, MR-compatible Delrin plastic that fits a commercially available MR surface coil. Mouse embryonic stem cells (mESCs) were transfected with the luciferase gene and labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Cells were stereotaxically implanted in mouse brain and imaged weekly for 4 weeks with BLI (IVIS Spectrum CT scanner) and MRI (11.7T horizontal bore scanner). Without the use of software co-registration, in vitro phantom studies yielded root-mean-square errors (RMSE) of 7.6×10-3, 0.93 mm, and 0.78 mm along the medial-lateral (ML), dorsal-ventral (DV), and anterior-posterior (AP) axes, respectively. Rotation errors were negligible. Software co-registration by translation along the DV and AP axes resulted in consistent agreement between the CT and MR images, without the need for rotation or warping. In vivo co-registered BLT/MRI mouse brain data sets demonstrated a single, diffuse region of BLI photon signal and MRI hypointensity. Over time, the transplanted cells formed tumors as validated by histopathology. Disagreement between BLT and MRI tumor location was greatest along the DV axis (1.4±0.2 mm) compared to the ML (0.5±0.3 mm) and AP axis (0.6 mm) due to the uncertainty of the depth of origin of the BLT signal. Combining the high spatial anatomical information of MRI with the cell viability/proliferation data from BLT should facilitate pre-clinical evaluation of novel therapeutic candidate stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...