Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 82(2): 90-8, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15341794

ABSTRACT

The aim of the present study was to verify the effects of pre- or post-training paradoxical sleep (PS) deprivation in mice tested in the passive and the plus-maze discriminative avoidance tasks. Three-month-old Swiss male mice were placed in narrow platforms in a water tank for 72 h to prevent the occurrence of PS. Control animals were kept in the same room, but in their home cages. Before or after this period, the animals were submitted to the training session of one of the behavioral tasks. The test sessions were performed 3 and 10 days after the training. The animals that were PS-deprived before the training session showed retention deficits in the test sessions performed 3 days later in both tasks (decreased latency to enter the dark chamber of the passive avoidance apparatus or increased percent time spent in the aversive arm of the plus-maze discriminative avoidance apparatus). Animals that were PS deprived after the training session showed no differences from control animals in the test sessions performed 3 days after the training in any of the tasks, but showed passive and discriminative avoidance retention deficits in the test performed 10 days after the training. The results suggest that both pre- and post-training paradoxical sleep deprivation produce memory deficits in mice. However, these effects have different temporal characteristics.


Subject(s)
Association Learning/physiology , Avoidance Learning/physiology , Maze Learning/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Animals , Male , Mice , Reaction Time/physiology , Time Factors
2.
Neuropharmacology ; 46(6): 895-903, 2004 May.
Article in English | MEDLINE | ID: mdl-15033349

ABSTRACT

Numerous animal and clinical studies have described memory deficits following sleep deprivation. There is also evidence that the absence of sleep increases brain oxidative stress. The present study investigates the role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Mice were sleep deprived for 72 h by the multiple platform method-groups of 4-6 animals were placed in water tanks, containing 12 platforms (3 cm in diameter) surrounded by water up to 1 cm beneath the surface. Mice kept in their home cage or placed onto larger platforms were used as control groups. The results showed that hippocampal oxidized/reduced glutathione ratio as well as lipid peroxidation of sleep-deprived mice was significantly increased compared to control groups. The same procedure of sleep deprivation led to a passive avoidance retention deficit. Both passive avoidance retention deficit and increased hippocampal lipid peroxidation were prevented by repeated treatment (15 consecutive days, i.p.) with the antioxidant agents melatonin (5 mg/kg), N-tert-butyl-alpha-phenylnitrone (200 mg/kg) or vitamin E (40 mg/kg). The results indicate an important role of hippocampal oxidative stress in passive avoidance memory deficits induced by sleep deprivation in mice.


Subject(s)
Hippocampus/physiology , Memory Disorders/metabolism , Oxidative Stress/physiology , Sleep Deprivation/metabolism , Animals , Hippocampus/metabolism , Male , Memory Disorders/psychology , Mice , Reaction Time/physiology , Sleep Deprivation/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...