Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(26): 32906-32929, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38907700

ABSTRACT

A promising class of porous crystalline materials, metal-organic frameworks (MOFs), have recently emerged as a potential material in fabricating mixed matrix membranes (MMMs) for gas separation applications. Their unique chemistry and structural versatility offer substantial advantages over conventional fillers. This review gives an in-depth exploration of MOF chemistry, focusing on strategies to manipulate their adsorption behavior to enhance separation properties. We scrutinize the impact of various MOF-based MMM components, including polymer matrix, MOFs fillers and polymer/filler interface, on the overall gas separation performance. This involves a detailed analysis of key parameters associated with MMM preparation. Additionally, we offer a comprehensive overview of the determining factors in MOF-based MMM development for gas separation, including MOF structure, synthesis, and chemistry. Moreover, the most advances in modification strategies of MOF for CO2 separation, such as a wide variety of hybrid MOFs will be outlined, which opens the door to an improved CO2 separation process. Finally, the gas transport mechanisms of MMMs are thoroughly discussed to understand the factors affecting the gas permeation through the polymer matrix, MOFs and interface between them.

2.
ACS Appl Mater Interfaces ; 12(33): 37527-37537, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32692915

ABSTRACT

The interfacial region has a critical role in determining the gas separation properties of nanofiller-containing membranes. However, the effects of surface chemistry of nanofillers on gas separation performance of thin film nanocomposite (TFN) membranes, prepared by the interfacial polymerization method, have been rarely studied in depth. In this work, pristine and three differently surface-modified halloysite nanotubes (HNTs), by non- (SHNT), moderately (ASHNT), or highly CO2-philic (SFHNT) agents, are embedded in the polyamide top layer of thin film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Trimethoxyoctyl silane, 3-(2-aminoethylaminopropyl)trimethoxysilane, and poly(styrenesulfonic acid) are used as modifying agents to quantitatively investigate the effects of interfacial interactions between the polyamide and HNTs on the gas permeation of TFNs. This allows us to provide an interfacial design strategy to fabricate high-performance gas separation membranes. Pure gas permeations conducted on the TFNs at the feed gas pressure of 10 bar showed that CO2 permeance and CO2/N2 and CO2/CH4 selectivities were increased by 145%, 130%, and 108%, respectively, after addition of 0.05 w/v% of sulfonated HNTs. The experimental gas permeations through all TFNs/HNTs, except TFNs/SFHNTs, agree well with predictions of a recently developed model, which suggests the importance of considering the neglected role of CO2 interactions with the HNT/polyamide interface in the model. These results unambiguously proved that designing the interfacial layer thickness in the nanotube-containing membranes is an effective approach to tuning the gas separation properties. The results show that the dispersion of HNTs in the polyamide top layer and the experimental CO2/gas selectivity was increased with increasing interfacial thickness, aint, upon surface modification. Moreover, it is quantitatively demonstrated that the thickness of the interfacial layer between the filler and polymer matrix is a function of gas pressure applied on the membrane.

3.
Langmuir ; 34(47): 14358-14367, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30379548

ABSTRACT

The effect of nanoconfinement on the segmental dynamics of a poly(methyl methacrylate) (PMMA)/poly(styrene- ran-acrylonitrile) (SAN) miscible blend, intercalated into the interlayer spacing of the organically modified nanoclay (OMNC), was investigated using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) methods. We reported an unusual phenomenon in which the weak interfacial interactions between the polymer chains and OMNCs was responsible for increase in segmental mobility at the glass-transition temperature ( Tg). Remarkably, we found a positive correlation between dynamic fragility and thermodynamic fragility, in which both fragilities decreased under nanoconfinement. The cooperative length of segmental motions, or length of cooperatively rearranging regions, ξCRR, decreased from 2.64 nm for the PMMA/SAN blend to 1.86 nm for the PMMA/SAN/OMNC nanocomposite. The segmental mobility of the PMMA/SAN/OMNC model was also studied using the molecular dynamics simulations. The simulation results showed the increased segmental mobility of the PMMA/SAN chains in the presence of OMNCs, which is in agreement with the DMA and DSC results.

5.
ACS Appl Mater Interfaces ; 9(42): 37321-37331, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28985055

ABSTRACT

Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (aint) and "interfacial permeation resistance" (Rint), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of aint, independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of aint and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO2/CH4 permeation, 12 sets of CO2/N2 permeation, 3 sets of CO2/O2 permeation, and 2 sets of CO2/H2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...