Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 19963-19983, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859117

ABSTRACT

We demonstrate wavenumber-dependent DLS-OCT measurements of collective and self-diffusion coefficients in concentrated silica suspensions across a broad q-range, utilizing a custom home-built OCT system. Depending on the sample polydispersity, either the collective or self-diffusion is measured. The measured collective-diffusion coefficient shows excellent agreement with hard-sphere theory and serves as an effective tool for accurately determining particle sizes. We employ the decoupling approximation for simultaneously measuring collective and self-diffusion coefficients, even in sufficiently monodisperse suspensions, using a high-speed Thorlabs OCT system. This enables particle size and volume fraction determination without the necessity of wavenumber-dependent measurements. We derive a relationship between the particle number-based polydispersity index and the ratio of self and collective mode amplitudes in the autocorrelation function and utilize it to measure the particle number-based polydispersity index. Notably, the polydispersity determined in this manner demonstrates improved sensitivity to smaller particle sizes compared to the standard intensity-based DLS cumulant analysis performed on dilute samples.

2.
Opt Express ; 31(3): 3755-3773, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785361

ABSTRACT

We have implemented number fluctuation dynamic light scattering optical coherence tomography (OCT) for measuring extremely slow, sub-diffusion flows of dilute particle suspensions using the second-order autocovariance function. Our method has a lower minimum measurable velocity than conventional correlation-based OCT or phase-resolved Doppler OCT, as the velocity estimation is not affected by the particle diffusion. Similar to non-dilute correlation-based OCT, our technique works for any Doppler angle. With our analysis we can quantitatively determine the concentration of particles under flow. Finally, we demonstrate 2D sub-diffusion flow imaging with a scanning OCT system at high rate by performing number fluctuation correlation analysis on subsequent B-scans.

3.
Opt Express ; 30(13): 23382-23397, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225019

ABSTRACT

We show scanning dynamic light scattering optical coherence tomography (OCT) omnidirectional flow measurements. Our method improves the velocity measurement limit over conventional correlation-based or phase-resolved Doppler OCT by more than a factor of 2. Our technique is applicable without a-priori knowledge of the flow geometry as our method works both for non-zero Doppler angle and non-ideal scan alignment. In addition, the method improves the particle diffusion coefficient estimation for particles under flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...