Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 201: 28-36, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28636970

ABSTRACT

During algal bloom periods, operation of seawater reverse osmosis (SWRO) pretreatment processes (e.g. ultrafiltration (UF)) has been hindered due to the high concentration of algal cells and algal organic matter (AOM). The present study evaluated for the first time the performance of titanium salts (i.e. titanium tetrachloride (TiCl4) and polytitanium tetrachloride (PTC)) for the removal of AOM in seawater and results were compared with the conventional FeCl3 coagulant. Previous studies already demonstrated that titanium salts not only provide a cost-effective alternative to conventional coagulants by producing a valuable by-product but also minimise the environmental impact of sludge production. Results from this study showed that both TiCl4 and PTC achieved better performance than FeCl3 in terms of turbidity, UV254 and dissolved organic carbon (DOC) removal at similar coagulant dose. Liquid chromatography - organic carbon detection (LC-OCD) was used to determine the removal of AOM compounds based on their molecular weight (MW). This investigation revealed that both humic substances and low MW organics were preferentially removed (i.e. up to 93% removal) while all three coagulants showed poorer performance for the removal of high MW biopolymers (i.e. less than 50% removal). The detailed characterization of flocs indicated that both titanium coagulants can grow faster, reach larger size and present a more compact structure, which is highly advantageous for the design of smaller and more compact mixing and sedimentation tanks. Both titanium coagulants also presented a higher ability to withstand shear force, which was related to the higher amount of DOC adsorbed with the aggregated flocs. Finally, TiCl4 had a better recovery after breakage suggesting that charge neutralization may be the dominant mechanism for this coagulant, while the lower recovery of both PTC and FeCl3 indicated that sweep flocculation is also a contributing mechanism for the coagulation of AOM.


Subject(s)
Seawater , Titanium , Water Purification , Flocculation , Microalgae , Salts
2.
Environ Pollut ; 216: 636-645, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27357483

ABSTRACT

The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to nZVI remediation.


Subject(s)
Arsenates/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Soil Pollutants/chemistry , Environmental Restoration and Remediation , Iron Radioisotopes/analysis , Polymers , Soil
3.
Anal Chim Acta ; 903: 13-35, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26709296

ABSTRACT

Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed.

4.
J Environ Manage ; 159: 135-142, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26067894

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment and policy development. In this study, we used a multi-method approach combining light scattering and field-flow fractionation techniques to assess both the aggregation behaviour and aggregate structure of TiO2 NPs in different river waters. Results showed that both the aggregate size and surface-adsorbed dissolved organic matter (DOM) were strongly related to the initial DOM concentration of the tested waters (i.e. R(2) > 0.90) suggesting that aggregation of TiO2 NPs is controlled by the presence and concentration of DOM. The conformation of the formed aggregates was also found to be strongly related to the surface-adsorbed DOM (i.e. R(2) > 0.95) with increasing surface-adsorbed DOM leading to more compact structures. Finally, the concentration of TiO2 NPs remaining in the supernatant after sedimentation of the larger aggregates was found to decrease proportionally with both increasing IS and decreasing DOM concentration, resulting in more than 95% sedimentation in the highest IS sample.


Subject(s)
Nanoparticles/chemistry , Titanium/chemistry , Adsorption , Particle Size , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
5.
J Hazard Mater ; 284: 190-200, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25463233

ABSTRACT

Adsorption of natural organic matter, aggregation and disaggregation have been identified as three of the main processes affecting the fate and behaviour of engineered nanoparticles (ENPs) in aquatic environments. However, although several methods have been developed to study the aggregation behaviour of ENPs in natural waters, there are only a few studies focusing on the fate of such aggregates and their potential disaggregation behaviour. In this study, we proposed and demonstrated a simple method for characterising the aggregation behaviour and aggregate structure of ENPs in different natural waters. Both the aggregate size of ENPs and their adsorption capacity for dissolved organic matter (DOM) were strongly related (R(2)>0.97, p<.05) to the combined effect of initial concentration of dissolved organic matter (DOM) and the ionic strength of the natural waters. The structure of the formed aggregates was strongly correlated (R(2)>0.95, p<.05) to the amount of DOM adsorbed by the ENPs during the aggregation process. Under high ionic strength conditions, aggregation is mainly governed by diffusion and the aggregates formed under these conditions showed the lowest stability and fractal dimension, forming linear, chain-like aggregates. In contrast, under low ionic strength conditions, the aggregate structure was more compact, most likely due to strong chemical binding with DOM and bridging mechanisms involving divalent cations formed during reaction-limited aggregation.


Subject(s)
Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Calcium/chemistry , Ferric Compounds/chemistry , Fractals , Humic Substances/analysis , Ions , Lasers , Light , Organic Chemicals/chemistry , Osmolar Concentration , Particle Size , Regression Analysis , Scattering, Radiation , Shear Strength , Surface Properties , Water/chemistry
6.
Water Sci Technol ; 70(12): 2040-6, 2014.
Article in English | MEDLINE | ID: mdl-25521141

ABSTRACT

Manufactured nanoparticles (MNPs) are increasingly released into the environment and thus research on their fate and behaviour in complex environmental samples is urgently needed. The fate of MNPs in the aquatic environment will mainly depend on the physico-chemical characteristics of the medium. The presence and concentration of natural organic matter (NOM) will play a significant role on the stability of MNPs by either decreasing or exacerbating the aggregation phenomenon. In this study, we firstly investigated the effect of NOM concentration on the aggregation behaviour of manufactured Fe-oxide nanoparticles. Then, the stability of the coated nanoparticles was assessed under relevant environmental conditions. Flow field-flow fractionation, an emerging method which is gaining popularity in the field of nanotechnology, has been employed and results have been compared to another size-measurement technique to provide increased confidence in the outcomes. Results showed enhanced stability when the nanoparticles are coated with NOM, which was due to electrosteric stabilisation. However, the presence of divalent cations, even at low concentration (i.e. less than 1 mM) was found to induce aggregation of NOM-coated nanoparticles via bridging mechanisms between NOM and Ca(2+).


Subject(s)
Metal Nanoparticles/chemistry , Cations, Divalent/chemistry , Chemical Fractionation , Environment , Nanoparticles , Organic Chemicals/chemistry , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...