Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202407349, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829568

ABSTRACT

Real-time visualization of metabolic processes in vivo provides crucial insights into conditions like cancer and metabolic disorders. Metabolic magnetic resonance imaging (MRI), by amplifying the signal of pyruvate molecules through hyperpolarization, enables non-invasive monitoring of metabolic fluxes, aiding in understanding disease progression and treatment response. Signal Amplification By Reversible Exchange (SABRE) presents a simpler, cost-effective alternative to dissolution dynamic nuclear polarization, eliminating the need for expensive equipment and complex procedures. We present the first in vivo demonstration of metabolic sensing in a human pancreatic cancer xenograft model compared to healthy mice. A novel perfluorinated Iridium SABRE catalyst in a fluorinated solvent and methanol blend facilitated this breakthrough with a 2.2-fold increase in [1-13C]pyruvate SABRE hyperpolarization. The perfluorinated moiety allowed easy separation of the heavy-metal-containing catalyst from the hyperpolarized [1-13C]pyruvate target. The perfluorinated catalyst exhibited recyclability, maintaining SABRE-SHEATH activity through subsequent hyperpolarization cycles with minimal activity loss after the initial two cycles. Remarkably, the catalyst retained activity for at least 10 cycles, with a 3.3-fold decrease in hyperpolarization potency. This proof-of-concept study encourages wider adoption of SABRE hyperpolarized [1-13C]pyruvate MR for studying in vivo metabolism, aiding in diagnosing stages and monitoring treatment responses in cancer and other diseases.

2.
Anal Chem ; 96(25): 10348-10355, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857182

ABSTRACT

Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.


Subject(s)
Magnetic Resonance Imaging , Molecular Imaging , Niacinamide , Point-of-Care Systems , Pyrazines , Niacinamide/chemistry , Molecular Imaging/methods , Pyrazines/chemistry , Humans
3.
Angew Chem Int Ed Engl ; : e202406551, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822492

ABSTRACT

It has been recently shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to that of maser, potentially enabling new ways of sensing of hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of MR detector (up to 1 million) were demonstrated.

4.
J Phys Chem Lett ; 15(20): 5382-5389, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738984

ABSTRACT

Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 µM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.


Subject(s)
Metronidazole , Water , Humans , Metronidazole/chemistry , Metronidazole/pharmacology , HEK293 Cells , Water/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen/chemistry , Nitrogen Isotopes/chemistry , Magnetic Resonance Imaging/methods , Contrast Media/chemistry
5.
Proc Natl Acad Sci U S A ; 121(18): e2405380121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657055
6.
Chemistry ; 30(25): e202304071, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38381807

ABSTRACT

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Subject(s)
Contrast Media , Lung , Magnetic Resonance Imaging , Xenon Isotopes , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Animals , Lung/diagnostic imaging , Rabbits , Xenon Isotopes/chemistry , Gases/chemistry , Ether/chemistry
7.
Anal Chem ; 96(10): 4171-4179, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38358916

ABSTRACT

We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.

8.
ACS Sens ; 9(2): 770-780, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38198709

ABSTRACT

13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.


Subject(s)
Carbon Isotopes , Contrast Media , Pyruvic Acid , Pyruvic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Lactic Acid
9.
J Am Chem Soc ; 146(1): 946-953, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38154120

ABSTRACT

Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.


Subject(s)
Iridium , Pyruvic Acid , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging , Water
10.
J Magn Reson Open ; 16-172023 Dec.
Article in English | MEDLINE | ID: mdl-38090022

ABSTRACT

Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.

11.
ACS Sens ; 8(11): 4101-4110, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37948125

ABSTRACT

Hyperpolarized [1-13C]pyruvate is the leading hyperpolarized injectable contrast agent and is currently under evaluation in clinical trials for molecular imaging of metabolic diseases, including cardiovascular disease and cancer. One aspect limiting broad scalability of the technique is that hyperpolarized 13C MRI requires specialized 13C hardware and software that are not generally available on clinical MRI scanners, which employ proton-only detection. Here, we present an approach that uses pulse sequences to transfer 13C hyperpolarization to methyl protons for detection of the 13C-13C pyruvate singlet, employing proton-only excitation and detection only. The new pulse sequences are robust to the B1 and B0 magnetic field inhomogeneities. The work focuses on singlet-to-magnetization (S2M) and rotor-synchronized (R) pulses, both relying on trains of hard pulses with broad spectral width coverage designed to effectively transform hyperpolarized 13C2-singlet hyperpolarization to 1H polarization on the CH3 group of [1,2-13C2]pyruvate. This approach may enable a broader adoption of hyperpolarized MRI as a molecular imaging technique.


Subject(s)
Protons , Pyruvic Acid , Pyruvic Acid/metabolism , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging/methods , Magnetic Fields
12.
ACS Sens ; 8(10): 3845-3854, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37772716

ABSTRACT

Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.


Subject(s)
Propane , Protons , Animals , Swine , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Gases , Contrast Media , Lung/diagnostic imaging
13.
J Magn Reson ; 354: 107521, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37487304

ABSTRACT

We report on hyperpolarization of quadrupolar (I=3/2) 131Xe via spin-exchange optical pumping. Observations of the 131Xe polarization dynamics via in situ low-field NMR show that the estimated alkali-metal/131Xe spin-exchange rates can be large enough to compete with 131Xe spin relaxation. 131Xe polarization up to 7.6±1.5% was achieved in ∼8.5×1020 spins-a ∼100-fold improvement in the total spin angular momentum-potentially enabling various applications, including: measurement of spin-dependent neutron-131Xe s-wave scattering; sensitive searches for time-reversal violation in neutron-131Xe interactions beyond the Standard Model; and surface-sensitive pulmonary MRI.

14.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37439488

ABSTRACT

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Magnetic Resonance Imaging/methods , Solvents/chemistry , Methanol , Water/chemistry
15.
Phys Chem Chem Phys ; 25(24): 16446-16458, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37306121

ABSTRACT

Hyperpolarization of 13C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2-13C2]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride-13C2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride-13C2-CH3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2-13C2]pyruvate-SABRE system.

16.
J Phys Chem A ; 127(23): 5018-5029, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37278605

ABSTRACT

Efficient 15N-hyperpolarization of [15N3]metronidazole was reported previously using the Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) technique. This hyperpolarized FDA-approved antibiotic is a potential contrast agent because it can be administered in a large dose and because previous studies revealed long-lasting HP states with exponential decay constant T1 values of up to 10 min. Possible hypoxia-sensing applications have been proposed using hyperpolarized [15N3]metronidazole. In this work, we report on the functionalization of [15N3]metronidazole with a fluorine-19 moiety via a one-step reaction to substitute the -OH group. SABRE-SHEATH hyperpolarization studies of fluoro-[15N3]metronidazole revealed efficient hyperpolarization of all three 15N sites with maximum %P15N values ranging from 4.2 to 6.2%, indicating efficient spin-relayed polarization transfer in microtesla fields via the network formed by 2J15N-15N. The corresponding 15N to 19F spin-relayed polarization transfer was found to be far less efficient with %P19F of 0.16%, i.e., more than an order of magnitude lower than that of 15N. Relaxation dynamics studies in microtesla fields support a spin-relayed polarization transfer mechanism because all 15N and 19F spins share the same T1 value of ca. 16-20 s and the same magnetic field profile for the SABRE-SHEATH polarization process. We envision the use of fluoro-[15N3]metronidazole as a potential hypoxia sensor. It is anticipated that under hypoxic conditions, the nitro group of fluoro-[15N3]metronidazole undergoes electronic stepwise reduction to an amino derivative. Ab initio calculations of 15N and 19F chemical shifts of fluoro-[15N3]metronidazole and its putative hypoxia-induced metabolites clearly indicate that the chemical shift dispersions of all three 15N sites and the 19F site are large enough to enable the envisioned hypoxia-sensing approaches.


Subject(s)
Fluorine , Metronidazole , Magnetic Resonance Spectroscopy/methods , Nitrogen Isotopes
17.
J Phys Chem Lett ; 14(23): 5305-5309, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37267594

ABSTRACT

Carbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting 13C polarization (T1 = 3.7 ± 0.25 and 1.7 ± 0.1 min) is demonstrated for the C1 and C2 nuclear sites, respectively. The remarkable polarization levels become possible as a result of favorable relaxation dynamics at the microtesla fields. The ultralong polarization lifetimes will be conducive to yielding high polarization after purification, quality assurance, and injection of the hyperpolarized molecular imaging probes. These results pave the way to future in vivo translation of carbon-13 hyperpolarized molecular imaging probes prepared by this approach.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes
18.
Angew Chem Int Ed Engl ; 62(31): e202219181, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37247411

ABSTRACT

We report dissolution Dynamic Nuclear Polarization (d-DNP) of [15 N3 ]metronidazole ([15 N3 ]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia-sensing molecular probe using 15 N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15 N3 ]MNZ with an exponential build-up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15 N3 ]MNZ lasted remarkably long with T1 values up to 343 s and 15 N polarizations up to 6.4 %. A time series of HP [15 N3 ]MNZ images was acquired in vitro using a steady state free precession sequence on the 15 NO2 peak. The signal lasted over 13 min with notably long T2 of 20.5 s. HP [15 N3 ]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP 15 N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.


Subject(s)
Anti-Bacterial Agents , Metronidazole , Rats , Animals , Metronidazole/pharmacology , Anti-Bacterial Agents/pharmacology , Solubility , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging
19.
Anal Chem ; 95(20): 7822-7829, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37163687

ABSTRACT

Hyperpolarization modalities overcome the sensitivity limitations of NMR and unlock new applications. Signal amplification by reversible exchange (SABRE) is a particularly cheap, quick, and robust hyperpolarization modality. Here, we employ SABRE for simultaneous chemical exchange of parahydrogen and nitrile-containing anticancer drugs (letrozole or anastrozole) to enhance 15N polarization. Distinct substrates require unique optimal parameter sets, including temperature, magnetic field, or a shaped magnetic field profile. The fine tuning of these parameters for individual substrates is demonstrated here to maximize 15N polarization. After optimization, including the usage of pulsed µT fields, the 15N nuclei on common anticancer drugs, letrozole and anastrozole, can be polarized within 1-2 min. The hyperpolarization can exceed 10%, corresponding to 15N signal enhancement of over 280,000-fold at a clinically relevant magnetic field of 1 T. This sensitivity gain enables polarization studies at naturally abundant 15N enrichment level (0.4%). Moreover, the nitrile 15N sites enable long-lasting polarization storage with [15N]T1 over 9 min, enabling signal detection from a single hyperpolarization cycle for over 30 min.


Subject(s)
Antineoplastic Agents , Magnetic Resonance Imaging , Letrozole , Anastrozole , Magnetic Resonance Spectroscopy , Antineoplastic Agents/pharmacology
20.
J Am Chem Soc ; 145(20): 11121-11129, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37172079

ABSTRACT

Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...