Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(3): 4511-4524, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297651

ABSTRACT

This paper introduces a simple method for the measurement of the relative permittivity and the Pockels coefficient of electro-optic (EO) materials in a waveguide up to sub-THz frequencies. By miniaturizing the device and making use of plasmonics, the complexities of traditional methods are mitigated. This work elaborates the fabrication tolerance and simplicity of the method, and highlights its applicability to various materials, substrates and configurations. The method is showcased using drop-casted perovskite barium titanate (BaTiO3, BTO) nano-particle thin-films and it has previously been used to measure epitaxial thin film BTO. In this work we show the effective relative permittivity of drop casted BTO to be εeff ∼ 30 at 200 MHz, dropping to ∼ 18 at 67 GHz and similarly, the effective Pockels coefficient was found to be reff ∼ 16 at 350 MHz and ∼ 8 at 70 GHz. These values are a factor > 50 below the values found for thin film BTO. Yet, the fact that the method can be applied to such different samples and Pockels strengths gives testimony to its versatility and sensitivity.

2.
Nano Lett ; 24(3): 859-865, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38051536

ABSTRACT

Broadband near-infrared light emitting tunnel junctions are demonstrated with efficient coupling to a silicon photonic waveguide. The metal oxide semiconductor devices show long hybrid photonic-plasmonic mode propagation lengths of approximately 10 µm and thus can be integrated into an overcoupled resonant cavity with quality factor Q ≈ 49, allowing for tens of picowatt near-infrared light emission coupled directly into a waveguide. The electron inelastic tunneling transition rate and the cavity mode density are modeled, and the transverse magnetic (TM) hybrid mode excitation rate is derived. The results coincide well with polarization resolved experiments. Additionally, current-stressed devices are shown to emit unpolarized light due to radiative recombination inside the silicon electrode.

3.
ACS Photonics ; 10(9): 3366-3373, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743947

ABSTRACT

Highly efficient coupling of light from an optical fiber to silicon nitride (SiN) photonic integrated circuits (PICs) is experimentally demonstrated with simple and fabrication-tolerant grating couplers (GC). Fully etched amorphous silicon gratings are formed on top of foundry-produced SiN PICs in a back-end-of-the-line (BEOL) process, which is compatible with 248 nm deep UV lithography. Metallic back reflectors are introduced to enhance the coupling efficiency (CE) from -1.11 to -0.44 dB in simulation and from -2.2 to -1.4 dB in experiments for the TE polarization in the C-band. Furthermore, these gratings can be optimized to couple both TE and TM polarizations with a CE below -3 dB and polarization-dependent losses under 1 dB over a wavelength range of 40 nm in the O-band. This elegant approach offers a simple solution for the realization of compact and, at the same time, highly efficient coupling schemes in SiN PICs.

4.
Nano Lett ; 21(11): 4539-4545, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34006114

ABSTRACT

We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal-insulator-metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O- and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.

5.
Science ; 366(6467): 860-864, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727832

ABSTRACT

Combining reprogrammable optical networks with complementary metal-oxide semiconductor (CMOS) electronics is expected to provide a platform for technological developments in on-chip integrated optoelectronics. We demonstrate how opto-electro-mechanical effects in micrometer-scale hybrid photonic-plasmonic structures enable light switching under CMOS voltages and low optical losses (0.1 decibel). Rapid (for example, tens of nanoseconds) switching is achieved by an electrostatic, nanometer-scale perturbation of a thin, and thus low-mass, gold membrane that forms an air-gap hybrid photonic-plasmonic waveguide. Confinement of the plasmonic portion of the light to the variable-height air gap yields a strong opto-electro-mechanical effect, while photonic confinement of the rest of the light minimizes optical losses. The demonstrated hybrid architecture provides a route to develop applications for CMOS-integrated, reprogrammable optical systems such as optical neural networks for deep learning.

6.
Opt Express ; 27(8): 11862-11868, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31053025

ABSTRACT

We demonstrate a low-loss coupling scheme between a silicon photonic waveguide and a hybrid-plasmonic waveguide. Measured coupling efficiencies reach up to 94% or -0.27 dB. The metal-insulator-semiconductor structure is fabrication-tolerant and adaptable to a wide range of materials including those used in CMOS processes. The coupler is a promising building block for low-loss active plasmonic devices.

7.
Nature ; 556(7702): 483-486, 2018 04.
Article in English | MEDLINE | ID: mdl-29695845

ABSTRACT

For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology3-6, sensing7,8, nonlinear optics9,10, optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...