Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(10): 103508, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319367

ABSTRACT

WEST (tungsten environment in steady-state tokamak) is starting operation for the first time with a water-cooled full tungsten divertor, enabling long pulse operation. Heating is provided by radiofrequency systems, including lower hybrid current drive (LHCD). In this context, a compact multi-energy hard x-ray camera has been installed for energy and space-resolved measurements of the electron temperature, the fast electron tail density produced by LHCD and runaway electrons, and the beam-target emission of tungsten at the target due to fast electron losses interacting with the divertor plates. The diagnostic is a pinhole camera based on a 2D pixel array detector (Pilatus 3 CdTe CMOS Hybrid-Pixel detector produced by DECTRIS). The novelty of this diagnostic technique is the detector's capability of adjusting the threshold energy at pixel level. This innovation provides great flexibility in the energy configuration, allowing simultaneous space and energy-resolved x-ray measurements. This contribution details two important steps in the preparation of the diagnostic operation. First, the in-vessel spatial calibration that was carried out with a radioactive source. Second, the synthetic diagnostic is obtained by the suite of codes ALOHA/C3PO/LUKE/R5-X2, which simulates LH wave propagation and absorption, as well as the fast electron bremsstrahlung production.

2.
Rev Sci Instrum ; 92(7): 073502, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34340413

ABSTRACT

A multi-energy soft x-ray pinhole camera has been designed, built, and deployed at the Madison Symmetric Torus to aid the study of particle and thermal transport, as well as MHD stability physics. This novel imaging diagnostic technique employs a pixelated x-ray detector in which the lower energy threshold for photon detection can be adjusted independently on each pixel. The detector of choice is a PILATUS3 100 K with a 450 µm thick silicon sensor and nearly 100 000 pixels sensitive to photon energies between 1.6 and 30 keV. An ensemble of cubic spline smoothing functions has been applied to the line-integrated data for each time-frame and energy-range, obtaining a reduced standard-deviation when compared to that dominated by photon-noise. The multi-energy local emissivity profiles are obtained from a 1D matrix-based Abel-inversion procedure. Central values of Te can be obtained by modeling the slope of the continuum radiation from ratios of the inverted radial emissivity profiles over multiple energy ranges with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints, high-density limitations, or need of shot-to-shot reproducibility. In tokamak plasmas, a novel application has recently been tested for early detection, 1D imaging, and study of the birth, exponential growth, and saturation of runaway electrons at energies comparable to 100 × Te,0; thus, early results are also presented.

3.
Rev Sci Instrum ; 92(4): 043509, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243460

ABSTRACT

A compact multi-energy soft x-ray diagnostic is being installed on the W Environment in Steady-state Tokamak (WEST), which was designed and built to test ITER-like tungsten plasma facing components in a long pulse (∼1000 s) scenario. The diagnostic consists of a pinhole camera fielded with the PILATUS3 photon-counting Si-based detector (≲100 kpixel). The detector has sensitivity in the range 1.6-30 keV and enables energy discrimination, providing a higher energy resolution than conventional systems with metal foils and diodes with adequate space and time resolution (≲1 cm and 2 ms). The lower-absorption cut-off energy is set independently on each one of the ∼100 kpixels, providing a unique opportunity to measure simultaneously the plasma emissivity in multiple energy ranges and deduce a variety of plasma parameters (e.g., Te, nZ, and ΔZeff). The energy dependence of each pixel is calibrated here over the range 3-22 keV. The detector is exposed to a variety of monochromatic sources-fluorescence emission from metallic targets-and for each pixel, the lower energy threshold is scanned to calibrate the energy dependence. The data are fit to a responsivity curve ("S-curve") that determines the mapping between the possible detector settings and the energy response for each pixel. Here, the calibration is performed for three energy ranges: low (2.3-6 keV), medium (4.5-13.5 keV), and high (5.4-21 keV). We determine the achievable energy resolutions for the low, medium, and high energy ranges as 330 eV, 640 eV, and 950 eV, respectively. The main limitation for the energy resolution is found to be the finite width of the S-curve.

4.
Phys Rev E ; 100(5-1): 052122, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869979

ABSTRACT

Fractional Levy motion has been derived from its generalized Langevin equation via path integrals in earlier works and has since proven to be a useful model for nonlocal and non-Markovian processes, especially in the context of nondiffusive transport. Here, we generalize the approach to treat tempered Lévy distributions and derive the propagator and diffusion equation of truncated asymmetrical fractional Levy motion via path integrals. The model now recovers exponentially tempered tails above a chosen scale in the propagator, and therefore finite moments at all orders. Concise analytical expressions for its variance, skewness, and kurtosis are derived as a function of time. We then illustrate the versatility of this model by applying it to simulations of the turbulent transport of fast ions in the TORPEX basic plasma device.

5.
Phys Rev E ; 99(5-1): 053208, 2019 May.
Article in English | MEDLINE | ID: mdl-31212579

ABSTRACT

Intermittent phenomena have long been studied in the context of nondiffusive transport across a variety of fields. In the TORPEX device, the cross-field spreading of an injected suprathermal ion beam by electrostatic plasma turbulence can access different nondiffusive transport regimes. A comprehensive set of suprathermal ion time series has been acquired, and time intermittency quantified by their skewness. Values distinctly above background level are found across all observed transport regimes. Intermittency tends to increase toward quasi- and superdiffusion and for longer propagation times of the suprathermal ions. The specific prevalence of intermittency is determined by the meandering motion of the instantaneous ion beam. We demonstrate the effectiveness of an analytical model developed to predict local intermittency from the time-average beam. This model might thus be of direct interest for similar systems, e.g., in beam physics, or meandering flux-rope models for solar energetic particle propagation. More generally, it illustrates the importance of identifying the system-specific sources of time-intermittent behavior when analyzing nondiffusive transport.

6.
Phys Rev Lett ; 120(10): 105001, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570337

ABSTRACT

The first direct experimental measurements of the scattering of a millimeter-wave beam by plasma blobs in a simple magnetized torus are reported. The wavelength of the beam is comparable to the characteristic size of the blob. In situ Langmuir probe measurements show that fluctuations of the electron density induce correlated fluctuations of the transmitted power. A first-principles full-wave model, using conditionally sampled 2D electron density profiles, predicts fluctuations of the millimeter-wave power that are in agreement with experiments.

7.
Rev Sci Instrum ; 89(12): 124702, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599624

ABSTRACT

We have designed and built an optically isolated millimeter-wave detection system to prevent interference from a nearby, powerful, 2.45 GHz microwave source in millimeter-wave propagation experiments in the TORoroidal Plasma EXperiment (TORPEX). A series of tests demonstrates excellent system noise immunity and the ability to observe effects that cannot be resolved in a setup using a bare Schottky diode detector.

8.
Rev Sci Instrum ; 87(11): 113504, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910384

ABSTRACT

We have designed and installed a new Langmuir-probe (LP) array diagnostic to determine basic three-dimensional (3D) features of plasmas in TORPEX. The diagnostic consists of two identical LP arrays, placed on opposite sides of the apparatus, which provide comprehensive coverage of the poloidal cross section at the two different toroidal locations. Cross correlation studies of signals from the arrays provide a basic way to extract 3D information from the plasmas, as experiments show. Moreover, the remarkable signal-to-noise performance of the front-end electronics allows us to follow a different approach in which we combine information from all probes in both arrays to reconstruct elementary 3D plasma structures at each acquisition time step. Then, through data analysis, we track the structures as they evolve in time. The LP arrays include a linear-motion mechanism that can displace radially the probes located on the low field side for experiments that require fine-tuning of the probe locations, and for operational compatibility with the recently installed in-vessel toroidal conductor.

SELECTION OF CITATIONS
SEARCH DETAIL
...