Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 34(2): 587-598, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37326926

ABSTRACT

In the current study, the co-precipitation technique was employed for the synthesis of Cadmium oxide (CdO) and Copper‒doped Cadmium oxide (Cu‒CdO) nanoparticles. The synthesized samples were subjected to powder X-Ray diffraction (P-XRD), Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray (EDX), Fourier transforms Infrared (FT-IR), UV-Vis spectroscopy, photoluminescence (PL), laser-induced fluorescence spectroscopy and antibacterial investigations. According to the P-XRD analysis, both the samples were simple cubic in structure and have average grain sizes of 54 and 28 nm, respectively. FE-SEM was deployed to explore the surface textures of the samples. EDX technique was used to look at the elemental compositions of the samples. The technique of FT-IR was employed to identify the vibrational modes. UV-Vis spectra in diffuse reflectance mode were obtained and the optical bandgaps of the CdO and Cu‒CdO samples were obtained as 4.52 eV and 2.83 eV, respectively. The photoluminescence studies were conducted at an excitation wavelength of 300 nm and emission peaks were red-shifted in both samples. Fluorescence spectroscopy was applied to explore the lifetimes of synthesized nanoparticles. The technique of Agar-well diffusion was applied to assess the antibacterial performance of the generated nanoparticles against Micrococcus Luteus (gram-positive) and Escherichia coli (gram-negative) bacterium at variable concentrations. Both samples in the current study are significantly effective against both bacterial strains.

2.
J Hazard Mater ; 180(1-3): 91-7, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20434836

ABSTRACT

In this study, the electrochemical treatment has been investigated in the real acidic effluent of copper-phthalocyanine dye manufacturing plant. Galvanostatic batch electrolyses have been carried out in an undivided cell using stainless steel as cathode, dimensionally stable anode (DSA) and graphite as anodes at different current densities and temperatures. The influence of these variables on current efficiency, cell voltage, energy consumption and deposit quality was reported. Under optimized conditions, the maximum copper recovery of 98% and COD removal efficiency of 87.3% with the energy consumption of about 11.23 kWh/kg of Cu and 6.08 kWh/kg of COD, respectively at 30 degrees C were achieved in the acidic raw effluent using 2D parallel-plate cathode. While in 3D stainless steel turning cathode reactor, 99.5% of copper can efficiently be recovered from dilute solution with an acceptable current efficiency of about 56.8% with minimum energy consumption of 2.37 kWh/kg of Cu. The experimental results suggested that the efficiency of copper removal is hindered by the presence of organic species in the mixed industrial effluent.


Subject(s)
Copper/isolation & purification , Electrolytes/chemistry , Industrial Waste , Oxygen/analysis , Water Pollutants, Chemical/isolation & purification , Microscopy, Electron, Scanning , Temperature
3.
J Hazard Mater ; 171(1-3): 748-54, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19592159

ABSTRACT

The high energy cost of an electrochemical method is the fatal drawback that hinders its large scale application in wastewater treatment. The traditional single-chamber electrochemical method used in the waste water treatment mainly focused on anodic oxidation, but hydrogen produced on the cathode and indirect electrochemical treatment involves application of an electrical current to the wastewater containing chloride to convert into chlorine/hypochlorite. The two-compartment electrolytic cell, separated by an anion exchange membrane, has been developed in this work. In the new reactor, indirect oxidation at anode, indirect oxidation by hydrogen peroxide and ultraviolet/hydrogen peroxide (UV/H(2)O(2)) at cathode can occur simultaneously. The electrochemically produced hydrogen peroxide at the cathode by reduction of oxygen is affected by passing atmospheric air. Therefore "dual electrochemical oxidation" in one electrochemical reactor was achieved successfully. Compared to a traditional one-cell reactor, this reactor reduces the energy cost approximately by 25-40%, and thus the present work becomes significant in wastewater treatment. Experiments were carried out at different current densities using Ti/RuO(2)/IrO(2) as anode and carbon felt gas diffusion electrode used as a cathode fed with oxygen containing gases to produce hydrogen peroxide. During the various stages of electrolysis, the parameters such as, effect of pH, chemical oxygen demand (COD), colour, energy consumption were monitored. UV-vis spectrometry, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) studies were carried out to assess efficiencies of dye degradation.


Subject(s)
Coloring Agents/chemistry , Electrochemistry/methods , Oxygen/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Carbon/chemistry , Chromatography, High Pressure Liquid , Electrodes , Electrolysis , Hydrogen-Ion Concentration , Industrial Waste , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...