Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; : 119574, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986800

ABSTRACT

Environmental pollution is increasing worldwide due to population and industrialization. Among the various forms of pollution, water pollution poses a significant challenge in contemporary times. In this study, we synthesized CuO-decorated montmorillonite K30 (MK30) nanosheets via a simple ultrasonication technique. The structural, morphological, compositional, and optical properties of the synthesized nanocomposites were evaluated using advanced instrumentation techniques. The morphology of CuO was cubic and cubic CuO evenly designed on the MK30, which was proved by Field Emission Scanning Electron Microscopy (FESEM). The adsorption photocatalytic activity of the synthesized cubic CuO/MK30 composites was examined through the degradation of MB under visible light irradiation. The apparent reaction rate constant of 20% CuO/MK30 was 12.5 folds higher than that of CuO. These conditions included a catalyst dosage ranging from 5 to 15 mg, a pH level ranging from to 3-11, and a pollutant concentration ranging from 5 to 20 mg/L. The optimal conditions for MB dye removal were determined using response surface methodology (RSM). A scavenger study of the composite was conducted and verified that •O2- and •OH radicals play an important role in the degradation process. This investigation addressed the process of adsorption and potential removal pathways, with a particular emphasis on the role of functional groups. The environmentally friendly CuO/MK30 nanocomposites exhibited potential as photocatalysts for efficiently absorbing and degrading MB dye and TC drug pollutants. They represent promising candidates for the treatment of industrial wastewater, aiming to mitigate the environmental threats posed by organic pollutants.

2.
Environ Res ; 219: 115052, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36535397

ABSTRACT

The in-depth usage of organic pollutants by pharmaceutical industries constitutes a major contaminant to the bodies of water due to their solubility, great mobility, ability to get attached to water bodies for a long period of time, and low biodegradability. Due to these, it may further cause disease and change the ecosystem of aqueous and other living organisms. Accordingly, effective removal of organic contaminants from waste water is a vital step in reducing the hazards. Photocatalysis is a potential technique for removing hazardous organic pollutants from wastewater. In this work, a simple ultra-sonication assisted approach, a series of Carrisa edulis fruit extract capped Co3O4 nanoparticles decorated on Montmorillonite K30 nanosheets (Co3O4/MK30) were prepared. The inherent physicochemical appearance and optical properties of as-prepared nanomaterials were investigated using a variety of analytical techniques. TEM analysis depicted the spherical shape of the Co3O4 NPs with the size of 11.25 nm. The degradation of methylthioninium chloride as a dye and tetracycline drug pollutants has been investigated in this study using individual and simultaneous photocatalysis systems in the presence of pure Co3O4 NPs and different ratios of Co3O4/MK30 nanocomposites. Owing to the generation of OH and O2 radicals, the 20% loaded Co3O4 on MK30 had the best photocatalytic performance of methylthioninium chloride (98.12%) and tetracycline degradation (87.4%), on exposing it to visible light. This research introduces a new design for MK30-based nanomaterials and proposes its use in environmental challenges.


Subject(s)
Environmental Pollutants , Nanoparticles , Methylene Blue , Fruit , Ecosystem , Tetracycline/chemistry , Anti-Bacterial Agents , Nanoparticles/chemistry , Wastewater , Catalysis
3.
Mol Divers ; 26(4): 2311-2339, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34705155

ABSTRACT

The use of montmorillonite clay as solid catalyst has grabbed much attention in the liquid phase reactions for organic synthesis. In recent years, there has been a lot of interest in organic synthesis using montmorillonite-based composites, especially in the synthesis of heterogeneous nanoparticles. Due to the robust and green nature of montmorillonite-based nanocatalysts, it has been widely used in N-heterocyclic reactions. In this review, we have concentrated on the reports pertaining the use of montmorillonite-based nanocatalyst in the synthesis of N-heterocycles, a category of organic compounds with excellent biological properties. This manuscript is arranged by the types of N-containing heterocycles synthesized using montmorillonite-based composite as catalysts including polycyclic spirooxindoles, heterocyclic propargylamine, indole-based heterocycles, quinoline and its derivatives, six-membered N-heterocyclic-based compounds and five-membered N-heterocyclic-based compounds. Special attention was given to the structural stability under experimental parameters of the montmorillonite-based composite with the incidence of metal leaching and reusability. Finally, along with recent developments, new findings in heterogeneous montmorillonite (Mt)-based catalysis have also been addressed.


Subject(s)
Heterocyclic Compounds , Nitrogen , Bentonite , Catalysis , Clay , Heterocyclic Compounds/chemistry , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...