Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Article in English | MEDLINE | ID: mdl-39001657

ABSTRACT

Large Language Models (LLMs) stand on the brink of reshaping the field of aging and dementia care, challenging the one-size-fits-all paradigm with their capacity for precision medicine and individualized treatment strategies. The "Large Pre-Trained Models with a Focus on AD/ADRD and Healthy Aging" symposium, organized by the National Institute on Aging and the Johns Hopkins AI & Technology Collaboratory for Aging Research, served as a platform for exploring this potential. The symposium brought together diverse experts to discuss the integration of LLMs in aging and dementia care. They highlighted the roles LLMs can play in clinical decision support and predictive analytics, while also addressing critical ethical concerns including bias, privacy, and the responsible use of AI. The discussions focused on the need to balance technological advancement with ethical considerations in AI deployment. In conclusion, the symposium projected a future where LLMs not only revolutionize healthcare practices but also pose significant challenges that require careful navigation.

2.
Alzheimers Dement ; 20(4): 3074-3079, 2024 04.
Article in English | MEDLINE | ID: mdl-38324244

ABSTRACT

This perspective outlines the Artificial Intelligence and Technology Collaboratories (AITC) at Johns Hopkins University, University of Pennsylvania, and University of Massachusetts, highlighting their roles in developing AI-based technologies for older adult care, particularly targeting Alzheimer's disease (AD). These National Institute on Aging (NIA) centers foster collaboration among clinicians, gerontologists, ethicists, business professionals, and engineers to create AI solutions. Key activities include identifying technology needs, stakeholder engagement, training, mentoring, data integration, and navigating ethical challenges. The objective is to apply these innovations effectively in real-world scenarios, including in rural settings. In addition, the AITC focuses on developing best practices for AI application in the care of older adults, facilitating pilot studies, and addressing ethical concerns related to technology development for older adults with cognitive impairment, with the ultimate aim of improving the lives of older adults and their caregivers. HIGHLIGHTS: Addressing the complex needs of older adults with Alzheimer's disease (AD) requires a comprehensive approach, integrating medical and social support. Current gaps in training, techniques, tools, and expertise hinder uniform access across communities and health care settings. Artificial intelligence (AI) and digital technologies hold promise in transforming care for this demographic. Yet, transitioning these innovations from concept to marketable products presents significant challenges, often stalling promising advancements in the developmental phase. The Artificial Intelligence and Technology Collaboratories (AITC) program, funded by the National Institute on Aging (NIA), presents a viable model. These Collaboratories foster the development and implementation of AI methods and technologies through projects aimed at improving care for older Americans, particularly those with AD, and promote the sharing of best practices in AI and technology integration. Why Does This Matter? The National Institute on Aging (NIA) Artificial Intelligence and Technology Collaboratories (AITC) program's mission is to accelerate the adoption of artificial intelligence (AI) and new technologies for the betterment of older adults, especially those with dementia. By bridging scientific and technological expertise, fostering clinical and industry partnerships, and enhancing the sharing of best practices, this program can significantly improve the health and quality of life for older adults with Alzheimer's disease (AD).


Subject(s)
Alzheimer Disease , Isothiocyanates , United States , Humans , Aged , Alzheimer Disease/therapy , Artificial Intelligence , Geroscience , Quality of Life , Technology
5.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13054-13067, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37335791

ABSTRACT

Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks. However, models trained with AT sacrifice standard accuracy and do not generalize well to unseen attacks. Recent works show generalization improvement with adversarial samples under unseen threat models such as on-manifold threat model or neural perceptual threat model. However, the former requires exact manifold information while the latter requires algorithm relaxation. Motivated by these considerations, we propose a novel threat model called Joint Space Threat Model (JSTM), which exploits the underlying manifold information with Normalizing Flow, ensuring that the exact manifold assumption holds. Under JSTM, we develop novel adversarial attacks and defenses. Specifically, we propose the Robust Mixup strategy in which we maximize the adversity of the interpolated images and gain robustness and prevent overfitting. Our experiments show that Interpolated Joint Space Adversarial Training (IJSAT) achieves good performance in standard accuracy, robustness, and generalization. IJSAT is also flexible and can be used as a data augmentation method to improve standard accuracy and combined with many existing AT approaches to improve robustness. We demonstrate the effectiveness of our approach on three benchmark datasets, CIFAR-10/100, OM-ImageNet and CIFAR-10-C.

7.
Diabetes Metab Syndr ; 17(3): 102732, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36867973

ABSTRACT

AIMS: Although obesity is associated with chronic disease, a large section of the population with high BMI does not have an increased risk of metabolic disease. Increased visceral adiposity and sarcopenia are also risk factors for metabolic disease in people with normal BMI. Artificial Intelligence (AI) techniques can help assess and analyze body composition parameters for predicting cardiometabolic health. The purpose of the study was to systematically explore literature involving AI techniques for body composition assessment and observe general trends. METHODS: We searched the following databases: Embase, Web of Science, and PubMed. There was a total of 354 search results. After removing duplicates, irrelevant studies, and reviews(a total of 303), 51 studies were included in the systematic review. RESULTS: AI techniques have been studied for body composition analysis in the context of diabetes mellitus, hypertension, cancer and many specialized diseases. Imaging techniques employed for AI methods include CT (Computerized Tomography), MRI (Magnetic Resonance Imaging), ultrasonography, plethysmography, and EKG(Electrocardiogram). Automatic segmentation of body composition by deep learning with convolutional networks has helped determine and quantify muscle mass. Limitations include heterogeneity of study populations, inherent bias in sampling, and lack of generalizability. Different bias mitigation strategies should be evaluated to address these problems and improve the applicability of AI to body composition analysis. CONCLUSIONS: AI assisted measurement of body composition might assist in improved cardiovascular risk stratification when applied in the appropriate clinical context.


Subject(s)
Artificial Intelligence , Hypertension , Humans , Body Composition , Electrocardiography , Heart Disease Risk Factors
8.
Trends Cogn Sci ; 26(2): 174-187, 2022 02.
Article in English | MEDLINE | ID: mdl-34955426

ABSTRACT

Deep learning (DL) is being successfully applied across multiple domains, yet these models learn in a most artificial way: they require large quantities of labeled data to grasp even simple concepts. Thus, the main bottleneck is often access to supervised data. Here, we highlight a trend in a potential solution to this challenge: synthetic data. Synthetic data are becoming accessible due to progress in rendering pipelines, generative adversarial models, and fusion models. Moreover, advancements in domain adaptation techniques help close the statistical gap between synthetic and real data. Paradoxically, this artificial solution is also likely to enable more natural learning, as seen in biological systems, including continual, multimodal, and embodied learning. Complementary to this, simulators and deep neural networks (DNNs) will also have a critical role in providing insight into the cognitive and neural functioning of biological systems. We also review the strengths of, and opportunities and novel challenges associated with, synthetic data.


Subject(s)
Deep Learning , Humans , Neural Networks, Computer
9.
IEEE Trans Pattern Anal Mach Intell ; 43(6): 1914-1927, 2021 06.
Article in English | MEDLINE | ID: mdl-31804929

ABSTRACT

In this article, we propose a novel object detection algorithm named "Deep Regionlets" by integrating deep neural networks and a conventional detection schema for accurate generic object detection. Motivated by the effectiveness of regionlets for modeling object deformations and multiple aspect ratios, we incorporate regionlets into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network provides guidance on where to select sub-regions from which features can be learned from. An object proposal typically contains three - 16 sub-regions. The regionlet learning module focuses on local feature selection and transformations to alleviate the effects of appearance variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we design a "gating network" within the regionlet leaning module to enable instance dependent soft feature selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We present ablation studies and extensive experiments on the PASCAL VOC dataset and the Microsoft COCO dataset. The proposed method yields competitive performance over state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.

10.
IEEE Trans Pattern Anal Mach Intell ; 41(1): 121-135, 2019 01.
Article in English | MEDLINE | ID: mdl-29990235

ABSTRACT

We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, HyperFace, fuses the intermediate layers of a deep CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features. It exploits the synergy among the tasks which boosts up their individual performances. Additionally, we propose two variants of HyperFace: (1) HyperFace-ResNet that builds on the ResNet-101 model and achieves significant improvement in performance, and (2) Fast-HyperFace that uses a high recall fast face detector for generating region proposals to improve the speed of the algorithm. Extensive experiments show that the proposed models are able to capture both global and local information in faces and performs significantly better than many competitive algorithms for each of these four tasks.


Subject(s)
Deep Learning , Face/diagnostic imaging , Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Posture/physiology , Algorithms , Female , Gender Identity , Humans , Male
11.
Trends Cogn Sci ; 22(9): 794-809, 2018 09.
Article in English | MEDLINE | ID: mdl-30097304

ABSTRACT

Inspired by the primate visual system, deep convolutional neural networks (DCNNs) have made impressive progress on the complex problem of recognizing faces across variations of viewpoint, illumination, expression, and appearance. This generalized face recognition is a hallmark of human recognition for familiar faces. Despite the computational advances, the visual nature of the face code that emerges in DCNNs is poorly understood. We review what is known about these codes, using the long-standing metaphor of a 'face space' to ground them in the broader context of previous-generation face recognition algorithms. We show that DCNN face representations are a fundamentally new class of visual representation that allows for, but does not assure, generalized face recognition.


Subject(s)
Facial Recognition , Neural Networks, Computer , Animals , Facial Recognition/physiology , Humans , Visual Cortex/physiology
12.
IEEE Trans Image Process ; 27(4): 2022-2037, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29989985

ABSTRACT

The use of multiple features has been shown to be an effective strategy for visual tracking because of their complementary contributions to appearance modeling. The key problem is how to learn a fused representation from multiple features for appearance modeling. Different features extracted from the same object should share some commonalities in their representations while each feature should also have some feature-specific representation patterns which reflect its complementarity in appearance modeling. Different from existing multi-feature sparse trackers which only consider the commonalities among the sparsity patterns of multiple features, this paper proposes a novel multiple sparse representation framework for visual tracking which jointly exploits the shared and feature-specific properties of different features by decomposing multiple sparsity patterns. Moreover, we introduce a novel online multiple metric learning to efficiently and adaptively incorporate the appearance proximity constraint, which ensures that the learned commonalities of multiple features are more representative. Experimental results on tracking benchmark videos and other challenging videos demonstrate the effectiveness of the proposed tracker.

13.
Proc Natl Acad Sci U S A ; 115(24): 6171-6176, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844174

ABSTRACT

Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible.


Subject(s)
Algorithms , Biometric Identification/methods , Face/anatomy & histology , Forensic Sciences/methods , Humans , Machine Learning , Reproducibility of Results
14.
IEEE Trans Pattern Anal Mach Intell ; 40(7): 1653-1667, 2018 07.
Article in English | MEDLINE | ID: mdl-28692963

ABSTRACT

Learning a classifier from ambiguously labeled face images is challenging since training images are not always explicitly-labeled. For instance, face images of two persons in a news photo are not explicitly labeled by their names in the caption. We propose a Matrix Completion for Ambiguity Resolution (MCar) method for predicting the actual labels from ambiguously labeled images. This step is followed by learning a standard supervised classifier from the disambiguated labels to classify new images. To prevent the majority labels from dominating the result of MCar, we generalize MCar to a weighted MCar (WMCar) that handles label imbalance. Since WMCar outputs a soft labeling vector of reduced ambiguity for each instance, we can iteratively refine it by feeding it as the input to WMCar. Nevertheless, such an iterative implementation can be affected by the noisy soft labeling vectors, and thus the performance may degrade. Our proposed Iterative Candidate Elimination (ICE) procedure makes the iterative ambiguity resolution possible by gradually eliminating a portion of least likely candidates in ambiguously labeled faces. We further extend MCar to incorporate the labeling constraints among instances when such prior knowledge is available. Compared to existing methods, our approach demonstrates improvements on several ambiguously labeled datasets.


Subject(s)
Face/anatomy & histology , Image Processing, Computer-Assisted/methods , Machine Learning , Pattern Recognition, Automated/methods , Algorithms , Biometric Identification , Databases, Factual , Humans
15.
IEEE Trans Image Process ; 26(10): 4741-4752, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28682252

ABSTRACT

We propose multi-task and multivariate methods for multi-modal recognition based on low-rank and joint sparse representations. Our formulations can be viewed as generalized versions of multivariate low-rank and sparse regression, where sparse and low-rank representations across all modalities are imposed. One of our methods simultaneously couples information within different modalities by enforcing the common low-rank and joint sparse constraints among multi-modal observations. We also modify our formulations by including an occlusion term that is assumed to be sparse. The alternating direction method of multipliers is proposed to efficiently solve the resulting optimization problems. Extensive experiments on three publicly available multi-modal biometrics and object recognition data sets show that our methods compare favorably with other feature-level fusion methods.

16.
IEEE Trans Pattern Anal Mach Intell ; 39(11): 2242-2255, 2017 11.
Article in English | MEDLINE | ID: mdl-28114004

ABSTRACT

In real-world visual recognition problems, low-level features cannot adequately characterize the semantic content in images, or the spatio-temporal structure in videos. In this work, we encode objects or actions based on attributes that describe them as high-level concepts. We consider two types of attributes. One type of attributes is generated by humans, while the second type is data-driven attributes extracted from data using dictionary learning methods. Attribute-based representation may exhibit variations due to noisy and redundant attributes. We propose a discriminative and compact attribute-based representation by selecting a subset of discriminative attributes from a large attribute set. Three attribute selection criteria are proposed and formulated as a submodular optimization problem. A greedy optimization algorithm is presented and its solution is guaranteed to be at least (1-1/e)-approximation to the optimum. Experimental results on four public datasets demonstrate that the proposed attribute-based representation significantly boosts the performance of visual recognition and outperforms most recently proposed recognition approaches.


Subject(s)
Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Algorithms , Animals , Databases, Factual , Human Activities/classification , Humans , Sports/classification , Video Recording
17.
IEEE Trans Image Process ; 25(6): 2542-56, 2016 05.
Article in English | MEDLINE | ID: mdl-27116671

ABSTRACT

Discriminative appearance features are effective for recognizing actions in a fixed view, but may not generalize well to a new view. In this paper, we present two effective approaches to learn dictionaries for robust action recognition across views. In the first approach, we learn a set of view-specific dictionaries where each dictionary corresponds to one camera view. These dictionaries are learned simultaneously from the sets of correspondence videos taken at different views with the aim of encouraging each video in the set to have the same sparse representation. In the second approach, we additionally learn a common dictionary shared by different views to model view-shared features. This approach represents the videos in each view using a view-specific dictionary and the common dictionary. More importantly, it encourages the set of videos taken from the different views of the same action to have the similar sparse representations. The learned common dictionary not only has the capability to represent actions from unseen views, but also makes our approach effective in a semi-supervised setting where no correspondence videos exist and only a few labeled videos exist in the target view. The extensive experiments using three public datasets demonstrate that the proposed approach outperforms recently developed approaches for cross-view action recognition.


Subject(s)
Algorithms , Machine Learning , Terminology as Topic
18.
IEEE Trans Pattern Anal Mach Intell ; 38(9): 1762-73, 2016 09.
Article in English | MEDLINE | ID: mdl-26552075

ABSTRACT

We address the video-based face association problem, in which one attempts to extract the face tracks of multiple subjects while maintaining label consistency. Traditional tracking algorithms have difficulty in handling this task, especially when challenging nuisance factors like motion blur, low resolution or significant camera motions are present. We demonstrate that contextual features, in addition to face appearance itself, play an important role in this case. We propose principled methods to combine multiple features using Conditional Random Fields and Max-Margin Markov networks to infer labels for the detected faces. Different from many existing approaches, our algorithms work in online mode and hence have a wider range of applications. We address issues such as parameter learning, inference and handling false positves/negatives that arise in the proposed approach. Finally, we evaluate our approach on several public databases.

19.
IEEE Trans Image Process ; 24(12): 5479-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415168

ABSTRACT

Complex visual data contain discriminative structures that are difficult to be fully captured by any single feature descriptor. While recent work on domain adaptation focuses on adapting a single hand-crafted feature, it is important to perform adaptation of a hierarchy of features to exploit the richness of visual data. We propose a novel framework for domain adaptation using a sparse and hierarchical network (DASH-N). Our method jointly learns a hierarchy of features together with transformations that rectify the mismatch between different domains. The building block of DASH-N is the latent sparse representation. It employs a dimensionality reduction step that can prevent the data dimension from increasing too fast as one traverses deeper into the hierarchy. The experimental results show that our method compares favorably with the competing state-of-the-art methods. In addition, it is shown that a multi-layer DASH-N performs better than a single-layer DASH-N.

20.
IEEE Trans Image Process ; 24(12): 5826-41, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415172

ABSTRACT

Visual tracking using multiple features has been proved as a robust approach because features could complement each other. Since different types of variations such as illumination, occlusion, and pose may occur in a video sequence, especially long sequence videos, how to properly select and fuse appropriate features has become one of the key problems in this approach. To address this issue, this paper proposes a new joint sparse representation model for robust feature-level fusion. The proposed method dynamically removes unreliable features to be fused for tracking by using the advantages of sparse representation. In order to capture the non-linear similarity of features, we extend the proposed method into a general kernelized framework, which is able to perform feature fusion on various kernel spaces. As a result, robust tracking performance is obtained. Both the qualitative and quantitative experimental results on publicly available videos show that the proposed method outperforms both sparse representation-based and fusion based-trackers.

SELECTION OF CITATIONS
SEARCH DETAIL
...