Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Soft Robot ; 9(6): 1052-1061, 2022 12.
Article in English | MEDLINE | ID: mdl-35049362

ABSTRACT

All soft robots require the same functionality, that is, controlling the shape of a structure made from soft materials. However, existing approaches for shape control of soft robots are primarily dominated by modular pneumatic actuators, which require multichambers and complex flow control components. Nature shows exciting examples of manipulation (shape change) in animals, such as worms, using a single-chambered soft body and programmable stiffness changes in the skin; controlling the spatial distribution of changes in stiffness enables achieving complex shape evolutions. However, such stiffness control requires a drastic membrane stiffness contrast between stiffened and nonstiffened states. Generally, this is extremely challenging to accomplish in stretchable materials. Inspired by longitudinal muscle fibers in the skin of worms, we developed a new concept for fabricating a hybrid fiber with tunable stiffness, that is, a fiber comprising both stiff and soft parts connected in a series. A substantial change in membrane stiffness was then observed by the locking/unlocking of the soft part. Our proposed hybrid fiber cyclically produced a membrane stiffness contrast of more than 100 × in less than 6 s using an input power of 3 W. A network of these hybrid fibers with tunable stiffness could manipulate a single-chambered soft body in multiple directions and transform it into a complex shape by selectively varying the stiffness at different locations.


Subject(s)
Robotics , Animals , Equipment Design
2.
Soft Robot ; 7(6): 688-699, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32255724

ABSTRACT

Soft actuators producing large motion in a short time are mostly based on stretchable polymers actuated by pneumatic pressure; they consist of bulky components, including a motor, pump/compressor, tubes, and valves. In this study, we develop a fast-responding large-amplitude soft actuator, based on a liquid-gas phase transition, which produces a compact system. The required pressure is generated solely by the electrically induced phase transition of a fluid in a cavity, mimicking the thigmonastic movements found in plants. We discuss the critical design variables to improve the performance and propose a new design for the electrodes, which are the most critical components. Our bending actuator produces large motion in <7 s, using a low-voltage source (<50 V) that allows a much faster response than the soft actuators based on phase transition currently available.


Subject(s)
Robotics , Electricity , Equipment Design , Phase Transition , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...