Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 43(22): 8344-54, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24728274

ABSTRACT

An anionic iron(III)-porphyrin-testosterone conjugate 1-Fe has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called 'Trojan Horse' strategy. This new 1-Fe-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the chemoselective and slightly enantioselective (ee = 13%) sulfoxidation of thioanisole by H2O2. Molecular modelling studies show that a synergy between the binding of the steroid moiety and that of the porphyrin macrocycle into the protein binding site can explain the experimental results, indicating a better affinity of 1-Fe for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the Fe-porphyrin complex is sandwiched between the two subdomains of the protein providing with good complementarities. However, the artificial cofactor entirely fills the cavity and its metal ion remains widely exposed to the solvent which explains the moderate enantioselectivity observed. Some possible improvements in the "Trojan Horse" strategy for obtaining better catalysts of selective oxidations are presented.


Subject(s)
Biocatalysis , Metalloporphyrins/chemical synthesis , Zinostatin/chemistry , Hydrogen Peroxide/chemistry , Metalloporphyrins/chemistry , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...