Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38187521

ABSTRACT

High-throughput dynamic imaging of cells and organelles is essential for understanding complex cellular responses. We report Mantis, a high-throughput 4D microscope that integrates two complementary, gentle, live-cell imaging technologies: remote-refocus label-free microscopy and oblique light-sheet fluorescence microscopy. Additionally, we report shrimPy, an open-source software for high-throughput imaging, deconvolution, and single-cell phenotyping of 4D data. Using Mantis and shrimPy, we achieved high-content correlative imaging of molecular dynamics and the physical architecture of 20 cell lines every 15 minutes over 7.5 hours. This platform also facilitated detailed measurements of the impacts of viral infection on the architecture of host cells and host proteins. The Mantis platform can enable high-throughput profiling of intracellular dynamics, long-term imaging and analysis of cellular responses to perturbations, and live-cell optical screens to dissect gene regulatory networks.

2.
ACS Chem Biol ; 16(4): 671-681, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33734687

ABSTRACT

Recent advances in genome engineering have expanded our capabilities to study proteins in their natural states. In particular, the ease and scalability of knocking-in small peptide tags has enabled high throughput tagging and analysis of endogenous proteins. To improve enrichment capacities and expand the functionality of knock-ins using short tags, we developed the tag-assisted split enzyme complementation (TASEC) approach, which uses two orthogonal small peptide tags and their cognate binders to conditionally drive complementation of a split enzyme upon labeled protein expression. Using this approach, we have engineered and optimized the tag-assisted split HaloTag complementation system (TA-splitHalo) and demonstrated its versatile applications in improving the efficiency of knock-in cell enrichment, detection of protein-protein interaction, and isolation of biallelic gene edited cells through multiplexing.


Subject(s)
Enzymes/metabolism , Proteins/metabolism , Flow Cytometry , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...