Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17671, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848614

ABSTRACT

Aging is the basis for several unfavorable conditions, including cardiovascular diseases (CVDs). In this sense, regular physical activity (regular PA) has been proven to delay cellular aging and prevent endothelial dysfunction related to CVDs. Despite numerous studies involving athletes, little is known about cellular and molecular mechanisms of regular PA among master athletes. The present study aimed at evaluating the effects of regular PA on local microcirculatory functions in elderly athletes as compared to age-matched sedentary controls. Moreover, molecular/epigenetic mechanisms (nitric oxide, oxidative stress, PGC-1α, SIRT1 and miR29) were also assessed. The results of the present study showed that regular PA significantly increased local blood flow in post-ischemia and post-heating conditions, as well as NO plasma concentrations, denoting a better endothelial function/microcirculatory efficiency. Moreover, athletes presented a greater plasma antioxidant and increased transcriptional levels of the metabolism regulator PGC-1α. Finally, regular PA enhanced plasma level of SIRT1 and miR29, suggested as epigenetic regulators of redox balance and cellular metabolism. In addition, stimulated local blood flow was directly related to plasma antioxidant capacity, and SIRT1 and miR29 levels. Overall, our data confirm the beneficial effects of regular PA on the cardiovascular profile in elderly athletes and shed light on molecular signals involved in the positive adaptations to exercise.


Subject(s)
Cardiovascular Diseases , Vascular Diseases , Humans , Aged , Antioxidants/metabolism , Sirtuin 1/genetics , Microcirculation , Exercise/physiology , Aging , Nitric Oxide
2.
Biomedicines ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37239028

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder with a prevalence of between 5% and 20% that commonly affects childbearing-aged women [...].

3.
J Funct Biomater ; 14(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36826858

ABSTRACT

INTRODUCTION: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin ß-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS: None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.

4.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36670977

ABSTRACT

Bee pollen represents one of the most complete natural foods playing an important role in the diet for its health qualities and therapeutic properties. This work aimed to characterize a Tuscan bee pollen by evaluating its phytochemical profile and the in vitro and ex vivo antioxidant activities. The isolation and taxonomic and functional characterization of yeasts in the sample has been also conducted. Finally, the pollen anti-inflammatory potential has been assessed on a TNFα-inflamed human colorectal adenocarcinoma cell line (HT-29). Our results highlighted a good phytochemical composition in terms of polyphenols, flavonoids, flavonols, monomeric anthocyanins, and carotenoids. In addition, we detected good antioxidant activity and radical scavenging capacity by in vitro and ex vivo assays, as well as good antioxidant activity by isolated yeasts. Data showed no cytotoxic effects of bee pollen extracts, with average viability values >80% at each tested dose. Moreover, TNFα treatment did not affect HT-29 viability while upregulating IL-8, COX-2, and ICAM-1 gene expression, otherwise reduced by both doses of bee pollen. In conclusion, our sample represents an interesting functional food and a potential probiotic product, having high phytochemical compound levels and good antioxidant activities, as well as anti-inflammatory effects on the TNFα-inflamed HT-29 cell line.

5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362229

ABSTRACT

Oocyte development and fertilization are largely influenced by the microenvironment of the follicular fluid (FF), and the exploration of its molecular/metabolic composition may help in improving in vitro fertilization (IVF) outcomes. Here, the concentrations of molecules related to oxidative stress/inflammation were measured in FF from follicles at oocyte retrieval during IVF. Here, the FF antioxidant potential was correlated with the number of retrieved/mature oocytes and the number of fertilized ones. FF collected from the follicles of normal fertilized oocytes presented an elevated antioxidant capability, lower levels of pro-inflammatory molecules (i.e., IL-6, IL-8, IL-12, TGF-ß, and HIF-1α), and a higher IL-10 concentration. FF samples from follicles at oocyte retrieval that resulted in top-quality embryos displayed a peculiar antioxidant capability and a further decrease in proinflammatory molecules when compared with FF, giving rise to poor-quality embryos. Finally, pro-inflammatory molecules were lower and accompanied by a high antioxidant capability in samples giving rise to successful embryo implantation. The antioxidant capability and IL-10 displayed a good predictive ability for fertilization and embryo quality. Overall, our data showed the great influence of oxidative stress on the oocytes' fertilization, and shed light on the importance of controlling the inflammatory and oxidative status of FF to obtain good-quality embryos with significant implantation potential.


Subject(s)
Antioxidants , Interleukin-10 , Female , Animals , Interleukin-10/metabolism , Antioxidants/metabolism , Oocytes/metabolism , Follicular Fluid/metabolism , Fertilization in Vitro/methods , Oxidative Stress , Signal Transduction
6.
Microorganisms ; 10(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36144344

ABSTRACT

Endophytes are beneficial microorganisms exerting growth-promoting activities in plants; they are most often located within the plant intercellular spaces and can be found in all plant tissues, including roots, leaves, stems, flowers, and seeds. In this work, we investigated the cultivable bacterial community of the seeds and the two-week sprouts of the Cannabis sativa L. cultivar "Futura 75". Endophytes were genotypically and phenotypically characterized and were exposed to different concentrations of seed extracts to verify their susceptibility. A bacterial strain among all the isolates was selected for germination tests of C. sativa in different experimental conditions. The results revealed the dominance of Firmicutes (Staphylococcus sp.) among the isolated strains. Two strains were different from the others for indole-3-acetic acid (IAA) production and for their resistance patterns towards abiotic and biotic stresses. The Sphingomonas sp. strain Can_S11 (Alphaproteobacteria) showed a potential ability to increase the nutraceutical features of its sprouts, particularly an increase in the polyphenol content and antioxidant activity. None of the isolated strains were susceptible to the seed extracts, which were previously tested as antimicrobial and antibiofilm agents against human pathogenic bacteria. The results open new perspectives for the study of the endophytes of C. sativa as possible biostimulants.

SELECTION OF CITATIONS
SEARCH DETAIL
...