Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 12(12): e1006467, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27930647

ABSTRACT

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.


Subject(s)
Arterivirus Infections/genetics , Chemokines, CXC/genetics , Equartevirus/genetics , Horse Diseases/genetics , Alleles , Amino Acid Sequence/genetics , Animals , Arterivirus Infections/veterinary , Arterivirus Infections/virology , CD3 Complex/genetics , CD3 Complex/immunology , Equartevirus/pathogenicity , Genetic Predisposition to Disease , Genome-Wide Association Study , Horse Diseases/virology , Horses/genetics , Horses/virology , Male , Phylogeny , Semen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/pathology
2.
Arch Virol ; 161(4): 821-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26711457

ABSTRACT

Strains of equine arteritis virus (EAV) differ in their virulence phenotypes, causing anywhere from subclinical infections to severe disease in horses. Here, we describe the in silico design and de novo synthesis of a full-length infectious cDNA clone of the horse-adapted virulent Bucyrus strain (VBS) of EAV encoding mCherry along with in vitro characterization of the progeny virions (EAV sVBSmCherry) in terms of host-cell tropism, replicative capacity and stability of the mCherry coding sequences following sequential passage in cell culture. The relative stability of the mCherry sequence during sequential cell culture passage coupled with a comparable host-cell range phenotype (equine endothelial cells, CD3(+) T cells and CD14(+) monocytes) to parental EAV VBS suggest that EAV-sVBSmCherry-derived virus could become a valuable research tool for identification of host-cell tropism determinants and for characterization of the viral proteins involved in virus attachment and entry into different subpopulations of peripheral blood mononuclear cells. Furthermore, this study demonstrates that advances in nucleic acid synthesis technology permit synthesis of complex viral genomes with overlapping genes like those of arteriviruses, thereby circumventing the need for complicated molecular cloning techniques. In summary, de novo nucleic acid synthesis technology facilitates innovative viral vector design without the tedium and risks posed by more-conventional laboratory techniques.


Subject(s)
DNA, Complementary/genetics , Equartevirus/genetics , Equartevirus/pathogenicity , Luminescent Proteins/metabolism , Animals , Antibodies, Monoclonal , Antigens, Viral , Cell Line , Cloning, Molecular , Cricetinae , Flow Cytometry , Gene Expression Regulation, Viral/physiology , Horses , Luminescent Proteins/genetics , Microscopy, Fluorescence , Rabbits , Virulence , Red Fluorescent Protein
3.
Article in English | MEDLINE | ID: mdl-23248776

ABSTRACT

YopM is one of the six "effector Yops" of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24-48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16-18 h p.i. in mice infected systemically with 10(6) bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b(+) cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b(+) cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Early Growth Response Protein 1/antagonists & inhibitors , Plague/pathology , Virulence Factors/metabolism , Yersinia pestis/pathogenicity , Animals , Bone Marrow/immunology , Cells, Cultured , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Early Growth Response Protein 1/biosynthesis , Female , Gene Expression Profiling , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred C57BL , Microarray Analysis , Plague/microbiology , Spleen/immunology , Time Factors
4.
Inflamm Bowel Dis ; 18(11): 2138-48, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23070952

ABSTRACT

BACKGROUND: The pathogenesis of inflammatory bowel disease (IBD) is complex and the need to identify molecular biomarkers is critical. Epithelial cells play a central role in maintaining intestinal homeostasis. We previously identified five "signature" biomarkers in colonic epithelial cells (CEC) that are predictive of disease phenotype in Crohn's disease. Here we investigate the ability of CEC biomarkers to define the mechanism and severity of intestinal inflammation. METHODS: We analyzed the expression of RelA, A20, pIgR, tumor necrosis factor (TNF), and macrophage inflammatory protein (MIP)-2 in CEC of mice with dextran sodium sulfate (DSS) acute colitis or T-cell-mediated chronic colitis. Factor analysis was used to combine the five biomarkers into two multifactorial principal components (PCs). PC scores for individual mice were correlated with disease severity. RESULTS: For both colitis models, PC1 was strongly weighted toward RelA, A20, and pIgR, and PC2 was strongly weighted toward TNF and MIP-2, while the contributions of other biomarkers varied depending on the etiology of inflammation. Disease severity was correlated with elevated PC2 scores in DSS colitis and reduced PC1 scores in T-cell transfer colitis. Downregulation of pIgR was a common feature observed in both colitis models and was associated with altered cellular localization of pIgR and failure to transport IgA. CONCLUSIONS: A multifactorial analysis of epithelial gene expression may be more informative than examining single gene responses in IBD. These results provide insight into the homeostatic and proinflammatory functions of CEC in IBD pathogenesis and suggest that biomarker analysis could be useful for evaluating therapeutic options for IBD patients.


Subject(s)
Biomarkers/metabolism , Colitis/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression Profiling , Intestinal Mucosa/metabolism , Acute Disease , Animals , Chronic Disease , Colitis/chemically induced , Colitis/pathology , Epithelial Cells/pathology , Female , Fluorescent Antibody Technique , Homeodomain Proteins , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
5.
Mech Ageing Dev ; 132(6-7): 274-86, 2011.
Article in English | MEDLINE | ID: mdl-21645538

ABSTRACT

Age-associated defects in both B-lymphocytes and macrophages in elderly result in a reduction in the efficacy of vaccines to many Gram positive bacteria like Streptococcus pneumoniae. Splenic macrophages from aged mice have been shown to have a defect in production of pro-inflammatory cytokines (IL-6, IL-12, IL-1ß, TNF-α) but exhibit increased production of IL-10 upon TLR-4 ligation. Here we showed that aged macrophages demonstrate similar cytokine dysregulation phenotype upon stimulation with TLR-2 ligands, or killed S. pneumoniae. We hypothesized that an age-associated increase in activity of phosphatidyl inositol 3-kinase (PI3K)-Akt signaling pathway may be playing a causal role in the age-associated cytokine dysregulation. We found that gene expression of both the regulatory (p85ß) and the catalytic (p110δ) subunits of Class IA PI3K is higher in aged than in young splenic macrophages. The age-associated increase in the activity of PI3K was also demonstrated by an upregulation of P-Akt and its downstream target, glycogen synthase kinase-3 (GSK-3). Inhibition of PI3K enhanced induction of pro-inflammatory cytokines, by TLR-2/TLR-1, TLR-2/TLR-6 and TLR-4 ligands as well as heat killed S. pneumoniae (HKSP). Therefore, targeting PI3-Kinase could rescue cytokine dysregulation in aged macrophages and enhance the relevant pro-inflammatory cytokines needed to support B-cell activation and differentiation.


Subject(s)
Aging/immunology , Cytokines/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/immunology , Spleen/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Aging/pathology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Differentiation/immunology , Female , Lymphocyte Activation/immunology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Spleen/pathology , Streptococcus pneumoniae/immunology
6.
J Proteome Res ; 9(12): 6232-41, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20945937

ABSTRACT

Doxorubicin (DOX) is an anticancer drug used for the treatment of solid tumors. The ability of DOX to treat cancer is not specific to cancer cells; some of the cells that are normal may also become targets of DOX, thereby altering the normal cellular functions and eventual cell loss. DOX effects have been studied in detail in heart because of its ability to cause cardiomyopathy. The exact mechanism of DOX-induced cardiomyopathy is not completely understood. One of organs that can be affected by DOX is thymus. DOX treatment leads to degeneration of thymus; however, since thymus undergoes age-dependent degeneration, researchers have understudied the effect of DOX on thymus. In the present investigation, we studied the effects of DOX on thymus, an organ that is important for the T-cell maturation. DOX treatment led to loss of cortical cells, decrease lymphopoiesis and increased the number of Hassells corpuscles, a marker of thymus aging. Proteomics analysis led to identification of a number of thymic proteins whose expression are altered by in vivo DOX treatment. Taken together, these results are consistent with the notion that DOX-treatment leads to thymic senescence.


Subject(s)
Cell Differentiation/drug effects , Doxorubicin/pharmacology , T-Lymphocytes/drug effects , Thymus Gland/drug effects , Adenosine Triphosphatases/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apolipoprotein A-I/metabolism , Electrophoresis, Gel, Two-Dimensional , Lymphopoiesis/drug effects , Male , Mice , Organ Size/drug effects , Proteins/analysis , Proteins/metabolism , Proteomics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thymus Gland/metabolism , Thymus Gland/pathology
7.
Mol Cancer ; 8: 132, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20043832

ABSTRACT

BACKGROUND: Previously we have shown that B cell receptor (BCR) expression and B cell receptor signaling pathways are important for the basal growth of B lymphoma cells. In particular we have shown that the activation of Syk, a non-src family protein tyrosine kinase and the mitogen activated protein kinases (MAPK), ERK and JNK that mediate BCR signals are required for the constitutive growth of B lymphoma cells. Since src family protein tyrosine kinases (SFKs) like Lyn are known to be needed for the phosphorylation of BCR co-receptors, Ig-alpha and Ig-beta, we hypothesized that one or more SFKs will be constitutively activated in B lymphoma cells and may be necessary for B lymphoma growth. RESULTS: Src kinase activity was found to be constitutively high in many murine and human B lymphoma cell lines and primary lymphoma samples. The specific pharmacological inhibitors of SFKs, PP1 and PP2 inhibited the proliferation of a number of both murine and human B lymphomas in a dose-dependent manner. Importantly, dasatinib (BMS-354825), an oral dual BCR-ABL and SFK specific inhibitor inhibited the growth of B lymphomas in the nanomolar range in vitro and strongly inhibited a mouse lymphoma growth in vivo. Among the SFKs, Lyn is predominantly phosphorylated and Lyn-specific small interfering RNA inhibited the growth of B lymphomas, supporting an important role for Lyn in B lymphoma growth. Suppression of SFK activity blocks BCR mediated signaling pathways. PMA or CpG can partially reverse the growth inhibition induced by SFK inhibition. Although blocking SFK activity inhibited the growth of a number of B lymphomas, some lymphomas such as SudHL-4, SudHL-6, OCI-Ly3 and OCI-Ly10 are more resistant due to an increased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. CONCLUSIONS: These studies further support our concept that BCR signaling pathways are important for the continued growth of established B lymphoma cells. Some of the intermediates in this BCR pathway are potential immunotherapeutic targets. In particular, inhibition of SFK activity alone or in synergy with inhibition of the prosurvival Bcl-2 proteins holds promise in developing more effective treatments for B lymphoma patients.


Subject(s)
Lymphoma, B-Cell/enzymology , src-Family Kinases/metabolism , Animals , Cell Survival , Dasatinib , Humans , Lymphoma, B-Cell/pathology , Mice , Pyrimidines/metabolism , Pyrimidines/pharmacology , RNA, Small Interfering/metabolism , Thiazoles/metabolism , Thiazoles/pharmacology
8.
J Leukoc Biol ; 79(6): 1314-27, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16603589

ABSTRACT

Aged humans and rodents are susceptible to infection with Streptococcus pneumoniae bacteria as a result of an inability to make antibodies to capsular polysaccharides. This is partly a result of decreased production of proinflammatory cytokines and increased production of interleukin (IL)-10 by macrophages (Mphi) from aged mice. To understand the molecular basis of cytokine dysregulation in aged mouse Mphi, a microarray analysis was performed on RNA from resting and lipopolysaccharide (LPS)-stimulated Mphi from aged and control mice using the Affymetrix Mouse Genome 430 2.0 gene chip. Two-way ANOVA analysis demonstrated that at an overall P < 0.01 level, 853 genes were regulated by LPS (169 in only the young, 184 in only the aged, and 500 in both). Expression analysis of systematic explorer revealed that immune response (proinflammatory chemokines, cytokines, and their receptors) and signal transduction genes were specifically reduced in aged mouse Mphi. Accordingly, expression of Il1 and Il6 was reduced, and Il10 was increased, confirming our previous results. There was also decreased expression of interferon-gamma. Genes in the Toll-like receptor-signaling pathway leading to nuclear factor-kappaB activation were also down-regulated but IL-1 receptor-associated kinase 3, a negative regulator of this pathway, was increased in aged mice. An increase in expression of the gene for p38 mitogen-activated protein kinase (MAPK) was observed with a corresponding increase in protein expression and enzyme activity confirmed by Western blotting. Low doses of a p38 MAPK inhibitor (SB203580) enhanced proinflammatory cytokine production by Mphi and reduced IL-10 levels, indicating that increased p38 MAPK activity has a role in cytokine dysregulation in the aged mouse Mphi.


Subject(s)
Aging/immunology , Cytokines/biosynthesis , Inflammation/physiopathology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/physiology , Receptors, Cytokine/biosynthesis , p38 Mitogen-Activated Protein Kinases/physiology , Animals , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Chemokines/biosynthesis , Chemokines/genetics , Cytokines/genetics , Disease Susceptibility , Female , Gene Expression Regulation/drug effects , Imidazoles/pharmacology , Interleukin-10/biosynthesis , Interleukin-10/genetics , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Pyridines/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Chemokine/biosynthesis , Receptors, Chemokine/genetics , Receptors, Cytokine/genetics , Signal Transduction/genetics , Subtraction Technique , Toll-Like Receptors/biosynthesis , Toll-Like Receptors/genetics , Toll-Like Receptors/physiology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
9.
J Leukoc Biol ; 77(4): 503-12, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15629885

ABSTRACT

A reduction in macrophage (MPhi) function with aging makes mice less responsive to bacterial capsular polysaccharides, such as those present in the pneumococcal polysaccharide vaccine, a model of thymus independent (TI) antigen (Ag). Using trinitrophenol (TNP)-lipopolysaccharide (LPS) and TNP-Ficoll, two other well-studied TI Ag, we studied the mechanistic basis of reduced MPhi function in the aged. We show that aged mice are profoundly hyporesponsive to these TI Ag. As a result of a requirement for MPhi, highly purified B cells from young-adult mice do not respond to TI Ag. When purified, young B cells were immunized with TNP-Ficoll, the antibody production from those cultures reconstituted with MPhi from aged mice was significantly lower than that seen with young MPhi. Consequently, this unresponsiveness can be overcome by a mixture of interleukin (IL)-1beta and IL-6. Upon stimulation with LPS, in comparison with young MPhi, aged MPhi secreted reduced amounts of IL-6, tumor necrosis factor alpha, IL-1beta, and IL-12, cytokines necessary for B cells to respond to TI Ag. LPS also induced aged MPhi to produce an excess of IL-10. Neutralization of IL-10 enhanced the production of proinflamatory cytokines by MPhi upon LPS stimulation and also induced Ab production by aged splenocytes. Thus, the inability of aged MPhi to help the B cell response appears to be caused by an excess of IL-10. As aged MPhi have a reduced number of cells expressing Toll-like receptor 4 and CD14, the imbalance in cytokine production might be partly a result of fewer cells expressing key components of the LPS receptor complex.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , Lipopolysaccharides/pharmacology , Lymphocytes/immunology , Macrophages/immunology , Animals , B-Lymphocytes/drug effects , Ficoll , Inflammation/immunology , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/immunology , Lymphocytes/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Picrates , Spleen/drug effects , Spleen/growth & development , Spleen/immunology
10.
Immunol Res ; 31(1): 25-36, 2005.
Article in English | MEDLINE | ID: mdl-15591620

ABSTRACT

The neonate has an increased susceptibility to infection, in part owing to an inability to produce antibody to thymus-independent antigens such as bacterial polysaccharides (PS). This poor response to PS antigens is likely owing to multiple factors. Neonatal B cells are of an immature phenotype, as evidenced by cell-surface marker characteristics and increased susceptibility to tolerance induction. The spleen of the neonate has a different cellular composition, which is most prominent in the marginal zone. Neonatal accessory cells such as macrophages and dendritic cells (DCs) appear to produce less stimulatory cytokines and an overabundance of inhibitory cytokines. This review examines the current data supporting the role of B cells and accessory cells in the neonatal unresponsiveness to PS antigens.


Subject(s)
Antigen-Presenting Cells/immunology , Antigens, T-Independent/immunology , B-Lymphocytes/immunology , Humans , Infant, Newborn , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...