Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(2): e0108222, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36633413

ABSTRACT

We report the draft genome sequences of three Pseudomonas chengduensis strains isolated from the sand dunes of the Merzouga (MDMC17 strain) and Erg Lihoudi (MDMC216 and MDMC224 strains) regions in the Moroccan desert. These bacteria are able to tolerate the harsh environmental conditions of the desert ecosystem.

2.
PLoS One ; 15(11): e0240345, 2020.
Article in English | MEDLINE | ID: mdl-33170902

ABSTRACT

In late December 2019, an emerging viral infection COVID-19 was identified in Wuhan, China, and became a global pandemic. Characterization of the genetic variants of SARS-CoV-2 is crucial in following and evaluating it spread across countries. In this study, we collected and analyzed 3,067 SARS-CoV-2 genomes isolated from 55 countries during the first three months after the onset of this virus. Using comparative genomics analysis, we traced the profiles of the whole-genome mutations and compared the frequency of each mutation in the studied population. The accumulation of mutations during the epidemic period with their geographic locations was also monitored. The results showed 782 variants sites, of which 512 (65.47%) had a non-synonymous effect. Frequencies of mutated alleles revealed the presence of 68 recurrent mutations, including ten hotspot non-synonymous mutations with a prevalence higher than 0.10 in this population and distributed in six SARS-CoV-2 genes. The distribution of these recurrent mutations on the world map revealed that certain genotypes are specific to geographic locations. We also identified co-occurring mutations resulting in the presence of several haplotypes. Moreover, evolution over time has shown a mechanism of mutation co-accumulation which might affect the severity and spread of the SARS-CoV-2. The phylogentic analysis identified two major Clades C1 and C2 harboring mutations L3606F and G614D, respectively and both emerging for the first time in China. On the other hand, analysis of the selective pressure revealed the presence of negatively selected residues that could be taken into considerations as therapeutic targets. We have also created an inclusive unified database (http://covid-19.medbiotech.ma) that lists all of the genetic variants of the SARS-CoV-2 genomes found in this study with phylogeographic analysis around the world.


Subject(s)
Betacoronavirus/genetics , Genetic Variation , Genome, Viral , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 , China , Coronavirus Infections/pathology , Coronavirus Infections/virology , Evolution, Molecular , Humans , Pandemics , Phylogeny , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Polyproteins , Protein Structure, Tertiary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
3.
Pathogens ; 9(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050463

ABSTRACT

The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.

4.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763932

ABSTRACT

Here, we report the draft genome sequence of Stenotrophomonas maltophilia MDMC339, a strain able to survive in the difficult conditions imposed by the Merzouga desert. The analyzed genome contains 4,788,525 bp with 4,262 genes coding for proteins, including several genes related to stress.

5.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763945

ABSTRACT

Here, we report the draft genome sequences of six severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains. SARS-CoV-2 is responsible for the COVID-19 pandemic, which started at the end of 2019 in Wuhan, China. The isolates were obtained from nasopharyngeal swabs from Moroccan patients with COVID-19. Mutation analysis revealed the presence of the spike D614G mutation in all six genomes, which is widely present in several genomes around the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...