Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
mBio ; : e0072624, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847540

ABSTRACT

The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.

2.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580884

ABSTRACT

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Subject(s)
Mutation , Protein Stability , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Mice , Female , CRISPR-Cas Systems , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats
3.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37962385

ABSTRACT

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Subject(s)
Amino Acid Motifs , Databases, Protein , Eukaryota , Amino Acid Motifs/genetics , Protein Processing, Post-Translational , Proteins/genetics , Proteins/metabolism , Eukaryota/genetics , Internet
4.
Methods Mol Biol ; 2705: 153-197, 2023.
Article in English | MEDLINE | ID: mdl-37668974

ABSTRACT

The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.


Subject(s)
Amino Acids , src Homology Domains , Phosphotyrosine , Cell Lineage , Cell Membrane
5.
Essays Biochem ; 66(7): 945-958, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36468648

ABSTRACT

Viruses and their hosts are involved in an 'arms race' where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.


Subject(s)
Viral Proteins , Amino Acid Motifs , Viral Proteins/genetics , Phylogeny
6.
Comput Struct Biotechnol J ; 20: 5098-5114, 2022.
Article in English | MEDLINE | ID: mdl-36187929

ABSTRACT

U-Omp19 is a bacterial protease inhibitor from Brucella abortus that inhibits gastrointestinal and lysosomal proteases, enhancing the half-life and immunogenicity of co-delivered antigens. U-Omp19 is a novel adjuvant that is in preclinical development with various vaccine candidates. However, the molecular mechanisms by which it exerts these functions and the structural elements responsible for these activities remain unknown. In this work, a structural, biochemical, and functional characterization of U-Omp19 is presented. Dynamic features of U-Omp19 in solution by NMR and the crystal structure of its C-terminal domain are described. The protein consists of a compact C-terminal beta-barrel domain and a flexible N-terminal domain. The latter domain behaves as an intrinsically disordered protein and retains the full protease inhibitor activity against pancreatic elastase, papain and pepsin. This domain also retains the capacity to induce CD8+ T cells in vivo of U-Omp19. This information may lead to future rationale vaccine designs using U-Omp19 as an adjuvant to deliver other proteins or peptides in oral formulations against infectious diseases, as well as to design strategies to incorporate modifications in its structure that may improve its adjuvanticity.

7.
Nat Struct Mol Biol ; 29(8): 781-790, 2022 08.
Article in English | MEDLINE | ID: mdl-35948766

ABSTRACT

Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.


Subject(s)
Intrinsically Disordered Proteins , Adenovirus E1A Proteins/chemistry , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Amino Acid Sequence , Intrinsically Disordered Proteins/chemistry , Protein Binding , Protein Domains , Retinoblastoma Protein/metabolism
8.
Structure ; 30(9): 1340-1353.e3, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35716663

ABSTRACT

The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.


Subject(s)
Repressor Proteins , Retinoblastoma Protein , Cell Cycle , Humans , Repressor Proteins/genetics , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Retinoblastoma-Like Protein p130/metabolism
9.
J Mol Biol ; 434(10): 167563, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35351519

ABSTRACT

Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.


Subject(s)
Adenovirus E1A Proteins , Evolution, Molecular , Host-Pathogen Interactions , Mastadenovirus , Adenovirus E1A Proteins/chemistry , Adenovirus E1A Proteins/genetics , Amino Acid Motifs , Animals , Mammals/virology , Mastadenovirus/chemistry , Mastadenovirus/genetics , Protein Interaction Mapping
10.
Front Immunol ; 13: 844837, 2022.
Article in English | MEDLINE | ID: mdl-35296091

ABSTRACT

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Subject(s)
Adjuvants, Immunologic/metabolism , B-Lymphocytes/immunology , Bacterial Outer Membrane Proteins/metabolism , Brucella/metabolism , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/physiology , Alum Compounds/metabolism , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral , Antibody Formation , Bacterial Outer Membrane Proteins/immunology , Brucella/immunology , Disease Resistance , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus/immunology
11.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850135

ABSTRACT

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/metabolism , Molecular Sequence Annotation , Software , Amino Acid Sequence , DNA/genetics , DNA/metabolism , Datasets as Topic , Gene Ontology , Humans , Internet , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Binding , RNA/genetics , RNA/metabolism
12.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718738

ABSTRACT

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Subject(s)
Communicable Diseases/genetics , Databases, Protein , Host-Pathogen Interactions/genetics , Protein Interaction Domains and Motifs , Software , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Animals , Binding Sites , Cell Cycle/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Communicable Diseases/metabolism , Communicable Diseases/virology , Cyclins/chemistry , Cyclins/genetics , Cyclins/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Gene Expression Regulation , Humans , Integrins/chemistry , Integrins/genetics , Integrins/metabolism , Mice , Molecular Sequence Annotation , Protein Binding , Rats , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Transport Vesicles/chemistry , Transport Vesicles/metabolism , Viruses/genetics , Viruses/metabolism
13.
Biomolecules ; 11(8)2021 07 21.
Article in English | MEDLINE | ID: mdl-34439737

ABSTRACT

PDZ domains are binding modules mostly involved in cell signaling and cell-cell junctions. These domains are able to recognize a wide variety of natural targets and, among the PDZ partners, viruses have been discovered to interact with their host via a PDZ domain. With such an array of relevant and diverse interactions, PDZ binding specificity has been thoroughly studied and a traditional classification has grouped PDZ domains in three major specificity classes. In this work, we have selected four human PDZ domains covering the three canonical specificity-class binding mode and a set of their corresponding binders, including host/natural, viral and designed PDZ motifs. Through calorimetric techniques, we have covered the entire cross interactions between the selected PDZ domains and partners. The results indicate a rather basic specificity in each PDZ domain, with two of the domains that bind their cognate and some non-cognate ligands and the two other domains that basically bind their cognate partners. On the other hand, the host partners mostly bind their corresponding PDZ domain and, interestingly, the viral ligands are able to bind most of the studied PDZ domains, even those not previously described. Some viruses may have evolved to use of the ability of the PDZ fold to bind multiple targets, with resulting affinities for the virus-host interactions that are, in some cases, higher than for host-host interactions.


Subject(s)
PDZ Domains , Proteins , Binding Sites , Humans , Ligands , Protein Binding , Protein Structure, Tertiary , Proteins/chemistry , Proteins/metabolism
14.
Methods Enzymol ; 647: 145-171, 2021.
Article in English | MEDLINE | ID: mdl-33482987

ABSTRACT

Linkers are crucial to the functions of multidomain proteins as they couple functional units to encode regulation such as auto-inhibition, enzyme targeting or tuning of interaction strength. A linker changes reactions from bimolecular to unimolecular, and the equilibrium and kinetics is thus determined by the properties of the linker rather than concentrations. We present a theoretical workflow for estimating the functional consequences of tethering by a linker. We discuss how to: (1) Identify flexible linkers from sequence. (2) Model the end-to-end distance distribution for a flexible linker using a worm-like chain. (3) Estimate the effective concentration of a ligand tethered by a flexible linker. (4) Calculate the decrease in binding affinity caused by auto-inhibition. (5) Calculate the expected avidity enhancement of a bivalent interaction from effective concentration. The worm-like chain modeling is available through a web application called the "Ceff calculator" (http://ceffapp.chemeslab.org), which will allow user-friendly prediction of experimentally inaccessible parameters.


Subject(s)
Mobile Applications , Kinetics , Ligands , Proteins
15.
Sci Signal ; 14(665)2021 01 12.
Article in English | MEDLINE | ID: mdl-33436497

ABSTRACT

The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the µ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin ß3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.


Subject(s)
COVID-19/virology , Host Microbial Interactions/physiology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Internalization , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/therapy , Conserved Sequence , Host Microbial Interactions/genetics , Humans , Integrins/chemistry , Integrins/genetics , Integrins/physiology , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Models, Biological , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/physiology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/physiology , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology
16.
Nucleic Acids Res ; 49(D1): D404-D411, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33305318

ABSTRACT

The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/chemistry , Humans , Search Engine , Tumor Suppressor Protein p53/chemistry
17.
Proc Natl Acad Sci U S A ; 117(31): 18574-18581, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32661155

ABSTRACT

Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.


Subject(s)
Anura/physiology , Biliverdine/metabolism , Serpins/metabolism , Skin Pigmentation/physiology , Animals , Anura/classification , Anura/genetics , Biliverdine/chemistry , Biological Mimicry/physiology , Serpins/chemistry , Serpins/genetics , Skin Pigmentation/genetics
18.
Nucleic Acids Res ; 48(D1): D296-D306, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31680160

ABSTRACT

The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.


Subject(s)
Amino Acid Motifs , Eukaryota , Apicoplasts/metabolism , Cytoskeleton , DNA Damage , Databases, Protein , Phosphotyrosine , src Homology Domains
19.
Nucleic Acids Res ; 48(D1): D269-D276, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31713636

ABSTRACT

The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the 'dark' proteome.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/chemistry , Biological Ontologies , Data Curation , Molecular Sequence Annotation
20.
Int J Mol Sci ; 20(9)2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31032817

ABSTRACT

(1) Background: Processivity is common among enzymes and mechanochemical motors that synthesize, degrade, modify or move along polymeric substrates, such as DNA, RNA, polysaccharides or proteins. Processive enzymes can make multiple rounds of modification without releasing the substrate/partner, making their operation extremely effective and economical. The molecular mechanism of processivity is rather well understood in cases when the enzyme structurally confines the substrate, such as the DNA replication factor PCNA, and also when ATP energy is used to confine the succession of molecular events, such as with mechanochemical motors. Processivity may also result from the kinetic bias of binding imposed by spatial confinement of two binding elements connected by an intrinsically disordered (ID) linker. (2) Method: By statistical physical modeling, we show that this arrangement results in processive systems, in which the linker ensures an optimized effective concentration around novel binding site(s), favoring rebinding over full release of the polymeric partner. (3) Results: By analyzing 12 such proteins, such as cellulase, and RNAse-H, we illustrate that in these proteins linker length and flexibility, and the kinetic parameters of binding elements, are fine-tuned for optimizing processivity. We also report a conservation of structural disorder, special amino acid composition of linkers, and the correlation of their length with step size. (4) Conclusion: These observations suggest a unique type of entropic chain function of ID proteins, that may impart functional advantages on diverse enzymes in a variety of biological contexts.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Interaction Domains and Motifs , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Cellulase/chemistry , Cellulase/metabolism , Chemical Phenomena , Conserved Sequence , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...