Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Materials (Basel) ; 16(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629938

ABSTRACT

Despite having a high early mechanical strength and using sulfoaluminate cement as the primary cementitious material, self-compacting repair mortar (SCRM) suffers from rapid hydration rates leading to construction time constraints. This study examined how several forms of calcium sulfate, including hemihydrate gypsum, anhydrite, and dihydrate gypsum, affected SCRM's workability, hydration process, and microstructure. The outcomes demonstrated that adding hemihydrate gypsum sped up SCRM's early hydration rate and boosted its expansion rate. For a cement with 8% hemihydrate gypsum, 6 h after adding the water, the flexural strength and compressive strength increased by 39.02% and 34.08%, respectively. The hydration rate of SCRM can be efficiently delayed by dihydrate gypsum, although the result is subpar. The material exhibited the lowest fluidity loss in 20 min, the setting time was extended, and the 28-day flexural and compressive strengths were raised by 26.56% and 28.08%, respectively, after adding 8 percent anhydrite.

2.
Genome Biol ; 24(1): 199, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653425

ABSTRACT

BACKGROUND: Cancer patients can achieve dramatic responses to chemotherapy yet retain resistant tumor cells, which ultimately results in relapse. Although xenograft model studies have identified several cellular and molecular features that are associated with chemoresistance in acute myeloid leukemia (AML), to what extent AML patients exhibit these properties remains largely unknown. RESULTS: We apply single-cell RNA sequencing to paired pre- and post-chemotherapy whole bone marrow samples obtained from 13 pediatric AML patients who had achieved disease remission, and distinguish AML clusters from normal cells based on their unique transcriptomic profiles. Approximately 50% of leukemic stem and progenitor populations actively express leukemia stem cell (LSC) and oxidative phosphorylation (OXPHOS) signatures, respectively. These clusters have a higher chance of tolerating therapy and exhibit an enhanced metabolic program in response to treatment. Interestingly, the transmembrane receptor CD69 is highly expressed in chemoresistant hematopoietic stem cell (HSC)-like populations (named the CD69+ HSC-like subpopulation). Furthermore, overexpression of CD69 results in suppression of the mTOR signaling pathway and promotion of cell quiescence and adhesion in vitro. Finally, the presence of CD69+ HSC-like cells is associated with unfavorable genetic mutations, the persistence of residual tumor cells in chemotherapy, and poor outcomes in independent pediatric and adult public AML cohorts. CONCLUSIONS: Our analysis reveals leukemia stem cell and OXPHOS as two major chemoresistant features in human AML patients. CD69 may serve as a potential biomarker in defining a subpopulation of chemoresistant leukemia stem cells. These findings have important implications for targeting residual chemo-surviving AML cells.


Subject(s)
Leukemia, Myeloid , Transcriptome , Adult , Humans , Child , Hematopoietic Stem Cells , Gene Expression Profiling , Signal Transduction
3.
Genomics Proteomics Bioinformatics ; 20(1): 177-191, 2022 02.
Article in English | MEDLINE | ID: mdl-34624550

ABSTRACT

Postzygotic mutations are acquired in normal tissues throughout an individual's lifetime and hold clues for identifying mutagenic factors. Here, we investigated postzygotic mutation spectra of healthy individuals using optimized ultra-deep exome sequencing of the time-series samples from the same volunteer as well as the samples from different individuals. In blood, sperm, and muscle cells, we resolved three common types of mutational signatures. Signatures A and B represent clock-like mutational processes, and the polymorphisms of epigenetic regulation genes influence the proportion of signature B in mutation profiles. Notably, signature C, characterized by C>T transitions at GpCpN sites, tends to be a feature of diverse normal tissues. Mutations of this type are likely to occur early during embryonic development, supported by their relatively high allelic frequencies, presence in multiple tissues, and decrease in occurrence with age. Almost none of the public datasets for tumors feature this signature, except for 19.6% of samples of clear cell renal cell carcinoma with increased activation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Moreover, the accumulation of signature C in the mutation profile was accelerated in a human embryonic stem cell line with drug-induced activation of HIF-1α. Thus, embryonic hypoxia may explain this novel signature across multiple normal tissues. Our study suggests that hypoxic condition in an early stage of embryonic development is a crucial factor inducing C>T transitions at GpCpN sites; and individuals' genetic background may also influence their postzygotic mutation profiles.


Subject(s)
Epigenesis, Genetic , Semen , Adult , Humans , Hypoxia , Hypoxia-Inducible Factor 1 , Male , Mutation
4.
Insect Sci ; 29(5): 1445-1460, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34939317

ABSTRACT

Male-specific wing spots are usually associated with wing displays in the courtship behavior of Drosophila and may play important roles in sexual selection. Two closely related species, D. nepalensis and D. trilutea, differ in wing spots and scissoring behavior. Here, we compare male morphological characters, pigmentation intensity of male wing spots, wing-scissoring behavior, courtship songs, and reproductive isolation between 2 species. F1 fertile females and sterile males result from the cross between females of D. nepalensis and males of D. trilutea. The pigmentation of wing spots is significantly weaker in D. trilutea than in D. nepalensis and the F1 hybrid. Males scissor both wings in front of the female during courtship, with a posture spreading wings more widely, and at a faster frequency in D. nepalensis than in D. trilutea and the F1s. Males of D. trilutea vibrate wings to produce 2 types (A and B) of pulse songs, whereas D. nepalensis and the F1s sing only type B songs. The incidence of wing vibration and scissoring during courtship suggests that wing vibration is essential but scissoring is a facultative courtship element for successful mating in both species. The association between the darker wing spots with more elaborate scissoring might be the consequence of correlated evolution of these traits in D. nepalensis; however, D. trilutea retains wing scissoring during courtship despite having weaker pigmentation of wing spots. The genetic architecture of 2 traits differs in the F1s, consistent with maternal or sex-linked effects for spots but nonadditive effects for scissoring.


Subject(s)
Courtship , Drosophila , Animals , Drosophila/genetics , Female , Male , Sexual Behavior, Animal , Species Specificity , Wings, Animal/anatomy & histology
5.
Blood Adv ; 5(7): 1837-1847, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33787864

ABSTRACT

Treatment refusal and death as a result of toxicity account for most treatment failures among children with acute myeloid leukemia (AML) in resource-constrained settings. We recently reported the results of treating children with AML with a combination of low-dose cytarabine and mitoxantrone or omacetaxine mepesuccinate with concurrent granulocyte colony-stimulating factor (G-CSF) (low-dose chemotherapy [LDC]) for remission induction followed by standard postremission strategies. We have now expanded the initial cohort and have provided long-term follow-up. Eighty-three patients with AML were treated with the LDC regimen. During the study period, another 100 children with AML received a standard-dose chemotherapy (SDC) regimen. Complete remission was attained in 88.8% and 86.4% of patients after induction in the LDC and SDC groups, respectively (P = .436). Twenty-two patients in the LDC group received SDC for the second induction course. Significantly more high-risk AML patients were treated with the SDC regimen (P = .035). There were no significant differences between the LDC and SDC groups in 5-year event-free survival (61.4% ± 8.7% vs 65.2% ± 7.4%, respectively; P = .462), overall survival (72.7% ± 6.9% vs 72.5% ± 6.2%, respectively; P = .933), and incidence of relapse (20.5% ± 4.5% vs 17.6% ± 3.9%, respectively; P = .484). Clearance of mutations based on the average variant allele frequency at complete remission in the LDC and SDC groups was 1.9% vs 0.6% (P < .001) after induction I and 0.17% vs 0.078% (P = .052) after induction II. In conclusion, our study corroborated the high remission rate reported for children with AML who received at least 1 course of LDC. The results, although preliminary, also suggest that long-term survival of these children is comparable to that of children who receive SDC regimens.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Child , Cytarabine/therapeutic use , Granulocyte Colony-Stimulating Factor , Humans , Leukemia, Myeloid, Acute/drug therapy , Remission Induction
7.
J Magn Reson Imaging ; 51(2): 397-406, 2020 02.
Article in English | MEDLINE | ID: mdl-31132207

ABSTRACT

BACKGROUND: Computed tomography (CT) or MR images may cause the severity of early acute pancreatitis (AP) to be underestimated. As an innovative image analysis method, radiomics may have potential clinical value in early prediction of AP severity. PURPOSE: To develop a contrast-enhanced (CE) MRI-based radiomics model for the early prediction of AP severity. STUDY TYPE: Retrospective. SUBJECTS: A total of 259 early AP patients were divided into two cohorts, a training cohort (99 nonsevere, 81 severe), and a validation cohort (43 nonsevere, 36 severe). FIELD STRENGTH/SEQUENCE: 3.0T, T1 -weighted CE-MRI. ASSESSMENT: Radiomics features were extracted from the portal venous-phase images. The "Boruta" algorithm was used for feature selection and a support vector machine model was established with optimal features. The MR severity index (MRSI), the Acute Physiology and Chronic Health Evaluation (APACHE) II, and the bedside index for severity in acute pancreatitis (BISAP) were calculated to predict the severity of AP. STATISTICAL TESTS: Independent t-test, Mann-Whitney U-test, chi-square test, Fisher's exact tests, Boruta algorithm, receiver operating characteristic analysis, DeLong test. RESULTS: Eleven potential features were chosen to develop the radiomics model. In the training cohort, the area under the curve (AUC) of the radiomics model, APACHE II, BISAP, and MRSI were 0.917, 0.750, 0.744, and 0.749, and the P value of AUC comparisons between the radiomics model and scoring systems were all less than 0.001. In the validation cohort, the AUC of the radiomics model, APACHE II, BISAP, and MRSI were 0.848, 0.725, 0.708, and 0.719, respectively, and the P value of AUC comparisons were 0.96 (radiomics vs. APACHE II), 0.40 (radiomics vs. BISAP), and 0.46 (radiomics vs. MRSI). DATA CONCLUSION: The radiomics model had good performance in the early prediction of AP severity. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:397-406.


Subject(s)
Pancreatitis , Acute Disease , Humans , Magnetic Resonance Imaging , Pancreatitis/diagnostic imaging , Predictive Value of Tests , Retrospective Studies
8.
J Evol Biol ; 32(10): 1124-1140, 2019 10.
Article in English | MEDLINE | ID: mdl-31386239

ABSTRACT

Changes in elements of courtship behaviour can influence sexual isolation between species. Large-scale analyses of changes, including loss and gain of courtship elements, across a relatively complete phylogenetic group are rare but needed to understand the significance of such changes, for example whether the gain and loss of courtship elements are essentially arbitrary or equally reversible. In most species of Drosophila, courtship, including singing, mainly occurs before mounting as premounting courtship. The Drosophila montium species group is unusual because loss of premounting courtship and gain of post-mounting one has been detected in this group. Here, we provide an extensive analysis on the courtship repertoire and songs of 42 species in this group. Synchronously captured video and audio recordings were analysed to describe courtship patterns and male courtship songs, and changes were analysed in a phylogenetic context. Ancestral state reconstruction suggests that a gain of post-mounting courtship singing at the ancestor of this species group has been accompanied by a concurrent decrease in the incidence of premounting courtship singing and has led to subsequent further decrease and eventually complete loss of premounting courtship song in several lineages. Alongside this evolutionary trend towards post-mounting courtship, sine song and a special type of "high pulse repetition song" have become more widely used for courtship during species diversification in the montium group. It is likely that the elaboration of post-mounting courtship behaviours is associated with changes in the relative importance of pre- and post-mounting components of mating systems, such as sperm competition or cryptic female choice.


Subject(s)
Biological Evolution , Drosophila/genetics , Drosophila/physiology , Sexual Behavior, Animal/physiology , Animal Communication , Animals , Bayes Theorem , Phylogeny
9.
Natl Sci Rev ; 6(3): 469-479, 2019 May.
Article in English | MEDLINE | ID: mdl-34691895

ABSTRACT

Standard chemotherapy regimens for remission induction of pediatric acute myeloid leukemia (AML) are associated with significant morbidity and mortality. We performed a cohort study to determine the impact of reducing the intensity of remission induction chemotherapy on the outcomes of selected children with AML treated with a low-dose induction regimen plus granulocyte colony stimulating factor (G-CSF) (low-dose chemotherapy (LDC)/G-CSF). Complete response (CR) after two induction courses was attained in 87.0% (40/46) of patients receiving LDC/G-CSF. Post-remission therapy was offered to all patients, and included standard consolidation and/or stem cell transplantation. During the study period, an additional 94 consecutive children with AML treated with standard chemotherapy (SDC) for induction (80/94 (85.1%) of the patients attained CR after induction II, P = 0.953) and post-remission. In this non-randomized study, there were no significant differences in 4-year event-free (67.4 vs. 70.7%; P = 0.99) and overall (70.3 vs. 74.6%, P = 0.69) survival in the LDC/G-CSF and SDC cohorts, respectively. After the first course of induction, recovery of white blood cell (WBC) and platelet counts were significantly faster in patients receiving LDC/G-CSF than in those receiving SDC (11.5 vs. 18.5 d for WBCs (P < 0.001); 15.5 vs. 22.0 d for platelets (P < 0.001)). To examine the quality of molecular response, targeted deep sequencing was performed. Of 137 mutations detected at diagnosis in 20 children who attained hematological CR after two courses of LDC/G-CSF (n = 9) or SDC (n = 11), all of the mutations were below the reference value (variant allelic frequency <2.5%) after two courses, irrespective of the treatment group. In conclusion, children with AML receiving LDC/G-CSF appear to have similar outcomes and mutation clearance levels, but significantly lower toxicity than those receiving SDC. Thus, LDC/G-CSF should be further evaluated as an effective alternative to remission induction in pediatric AML.

10.
Blood Sci ; 1(1): 73-76, 2019 Aug.
Article in English | MEDLINE | ID: mdl-35402804

ABSTRACT

Individual tumors comprise genetically and epigenetically heterogeneous subclones, each of which is presumably associated with a distinct function, such as self-renewal or drug sensitivity. The dissection of such intratumoral heterogeneity is crucial to understand how tumors evolve during disease progression and under the selection of therapeutic intervention. As a paradigm of cancer intratumoral heterogeneity and clonal evolution, acute myeloid leukemia (AML) has been shown to possess complex clonal architecture based on karyotype studies, as well as deep sequencing of mixed cellular populations using next-generation sequencing (NGS) technologies. The recent development of single-cell sequencing (SCS) methods provides a powerful tool to allow analysis of genomes, transcriptomes, proteomes, and epigenomes at an individual cell level. The technologies applied in AML have broadened our understanding of AML heterogeneity and provided new insights for the development of novel therapeutic strategies. In this review, we summarize the progress in the research of AML heterogeneity using SCS technology and discuss the limitations and future direction regarding how SCS can contribute to AML prognosis and treatment.

11.
Cancer Discov ; 8(11): 1438-1457, 2018 11.
Article in English | MEDLINE | ID: mdl-30139811

ABSTRACT

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.


Subject(s)
Core Binding Factor Alpha 2 Subunit/physiology , Histone-Lysine N-Methyltransferase/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Hypoxia/physiopathology , Myelodysplastic Syndromes/pathology , Myeloid-Lymphoid Leukemia Protein/physiology , Animals , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Metabolome , Mice , Mice, Knockout , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism
12.
Leuk Res ; 65: 20-24, 2018 02.
Article in English | MEDLINE | ID: mdl-29253671

ABSTRACT

Genomic alterations underlying chemotherapy resistance remains poorly characterized in pediatric acute myeloid leukemia (AML). In this study, we used whole exome sequencing to identify gene mutations associated with chemo-resistance in 44 pediatric AML patients. We identified previously unreported mutations involving epigenetic regulators such as KDM5C, SRIT6, CHD4, and PRPF6 in pediatric AML patients. Despite low prevalence in general pediatric AML, mutations involving epigenetic regulators including splicing factors, were collectively enriched as a group in primary chemo-resistance AML patients. In addition, clonal evolution analysis of secondary chemo-resistance AML patients reveals dominant clone at diagnosis could survive several course of intensified chemotherapy. And gain of new mutations in genes such as MVP, TCF3, SS18, and BCL10, may contribute to chemo-resistance at relapse. These results provide novel insights into the genetic basis of treatment failure in pediatric AML.


Subject(s)
Asian People/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Exome Sequencing , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Child , China , Humans , Leukemia, Myeloid, Acute/ethnology
14.
Nat Genet ; 46(3): 287-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24509477

ABSTRACT

Acute leukemia characterized by chromosomal rearrangements requires additional molecular disruptions to develop into full-blown malignancy, yet the cooperative mechanisms remain elusive. Using whole-genome sequencing of a pair of monozygotic twins discordant for MLL (also called KMT2A) gene-rearranged leukemia, we identified a transforming MLL-NRIP3 fusion gene and biallelic mutations in SETD2 (encoding a histone H3K36 methyltransferase). Moreover, loss-of-function point mutations in SETD2 were recurrent (6.2%) in 241 patients with acute leukemia and were associated with multiple major chromosomal aberrations. We observed a global loss of H3K36 trimethylation (H3K36me3) in leukemic blasts with mutations in SETD2. In the presence of a genetic lesion, downregulation of SETD2 contributed to both initiation and progression during leukemia development by promoting the self-renewal potential of leukemia stem cells. Therefore, our study provides compelling evidence for SETD2 as a new tumor suppressor. Disruption of the SETD2-H3K36me3 pathway is a distinct epigenetic mechanism for leukemia development.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Leukemia/genetics , Mutation , Adaptor Proteins, Signal Transducing/genetics , Child, Preschool , Chromosome Aberrations , Diseases in Twins/genetics , Epigenesis, Genetic , Female , Gene Fusion , Genes, Tumor Suppressor , Humans , Leukemia, Monocytic, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Point Mutation , Translocation, Genetic , Twins, Monozygotic
15.
Blood ; 123(11): 1729-38, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24449215

ABSTRACT

RUNX1/CBFß (core binding factor [CBF]) is a heterodimeric transcription factor complex that is frequently involved in chromosomal translocations, point mutations, or deletions in acute leukemia. The mixed lineage leukemia (MLL) gene is also frequently involved in chromosomal translocations or partial tandem duplication in acute leukemia. The MLL protein interacts with RUNX1 and prevents RUNX1 from ubiquitin-mediated degradation. RUNX1/CBFß recruits MLL to regulate downstream target genes. However, the functional consequence of MLL fusions on RUNX1/CBFß activity has not been fully understood. In this report, we show that MLL fusion proteins and the N-terminal MLL portion of MLL fusions downregulate RUNX1 and CBFß protein expression via the MLL CXXC domain and flanking regions. We confirmed this finding in Mll-Af9 knock-in mice and human M4/M5 acute myeloid leukemia (AML) cell lines, with or without MLL translocations, showing that MLL translocations cause a hypomorph phenotype of RUNX1/CBFß. Overexpression of RUNX1 inhibits the development of AML in Mll-Af9 knock-in mice; conversely, further reducing Runx1/Cbfß levels accelerates MLL-AF9-mediated AML in bone marrow transplantation assays. These data reveal a newly defined negative regulation of RUNX1/CBFß by MLL fusion proteins and suggest that targeting RUNX1/CBFß levels may be a potential therapy for MLLs.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor beta Subunit/metabolism , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/physiology , Animals , Blotting, Western , Bone Marrow Transplantation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor beta Subunit/genetics , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Phenotype , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic
16.
Int J Hematol ; 96(4): 428-37, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23054645

ABSTRACT

Leukemias bearing rearrangements of chromosome 11q23 are of particular interest due to their unique clinical and biological characteristics. 11q23 abnormalities occur in up to 70 % of infant leukemias, and about 10 % of adult acute myelogenous leukemias (AML). Two major rearrangements of the MLL gene are found in MLL-related leukemia. The most common of these is balanced translocations in which the N-terminal portion of MLL is fused to the C-terminus of the translocation partner. To date, nearly 100 different chromosome bands have been described in rearrangements involving MLL, and more than 70 known fusion partners of MLL have been cloned and characterized at the molecular level. Another major aberration of the MLL gene creates a repeat within the N-terminal MLL resulting in an internal partial tandem duplication (PTD). As a consequence, an extra amino-terminus is added in-frame to full-length MLL, resulting in leukemogenic MLL-PTD. MLL-PTD occurs predominantly in myeloid dysplasia syndromes, secondary AML (s-AML), and de novo AML. The presence of an MLL rearrangement generally confers a poor prognosis. MLL fusions and MLL-PTD are transcriptional regulators that take control of targets normally controlled by MLL, with the clustered HOX homeobox genes as prominent examples. Several epigenetic regulators that modify DNA or histones have been implicated in MLL fusion driven leukemogenesis, including DNA methylation, histone acetylation, and histone methylation. Recently, the histone methyltransferase DOT1L, the bromodomain and extra-terminal (BET) family member BRD4, and the MLL-interacting protein Menin have emerged as important mediators of MLL fusion-mediated leukemic transformation. The clinical development of targeted inhibitors of these epigenetic regulators has heralded promise for the treatment of MLL fusion leukemia. Although the biological function and molecular mechanism for MLL-PTD remains largely unknown, based on the primary protein structure of MLL-PTD and the knowledge gained so far from MLL fusions, newly developed inhibitors of epigenetic regulators could potentially also prove effective in the treatment of MLL-PTD related leukemias.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Animals , Clinical Trials as Topic , Hematopoiesis/genetics , Humans , Leukemia/drug therapy , Leukemia/metabolism , Molecular Targeted Therapy , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...