Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
mBio ; 14(1): e0304222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36622147

ABSTRACT

The Toxoplasma inner membrane complex (IMC) is a unique organelle that plays critical roles in parasite motility, invasion, egress, and replication. The IMC is delineated into the apical, body, and basal regions, defined by proteins that localize to these distinct subcompartments. The IMC can be further segregated by proteins that localize specifically to the maternal IMC, the daughter bud IMC, or both. While the function of the maternal IMC has been better characterized, the precise roles of most daughter IMC components remain poorly understood. Here, we demonstrate that the daughter protein IMC29 plays an important role in parasite replication. We show that Δimc29 parasites exhibit severe replication defects, resulting in substantial growth defects and loss of virulence. Deletion analyses revealed that IMC29 localization is largely dependent on the N-terminal half of the protein containing four predicted coiled-coil domains while IMC29 function requires a short C-terminal helical region. Using proximity labeling, we identify eight novel IMC proteins enriched in daughter buds, significantly expanding the daughter IMC proteome. We additionally report four novel proteins with unique localizations to the interface between two parasites or to the outer face of the IMC, exposing new subregions of the organelle. Together, this work establishes IMC29 as an important early daughter bud component of replication and uncovers an array of new IMC proteins that provides important insights into this organelle. IMPORTANCE The inner membrane complex (IMC) is a conserved structure across the Apicomplexa phylum, which includes obligate intracellular parasites that cause toxoplasmosis, malaria, and cryptosporidiosis. The IMC is critical for the parasite to maintain its intracellular lifestyle, particularly in providing a scaffold for daughter bud formation during parasite replication. While many IMC proteins in the later stages of division have been identified, components of the early stages of division remain unknown. Here, we focus on the early daughter protein IMC29, demonstrating that it is crucial for faithful parasite replication and identifying specific regions of the protein that are important for its localization and function. We additionally use proximity labeling to reveal a suite of daughter-enriched IMC proteins, which represent promising candidates to further explore this IMC subcompartment.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Toxoplasma/chemistry , Proteome/metabolism , Nuclear Family , Protozoan Proteins/metabolism , Toxoplasmosis/parasitology
2.
mBio ; 12(5): e0245521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634933

ABSTRACT

The cytoskeleton of Toxoplasma gondii is composed of the inner membrane complex (IMC) and an array of underlying microtubules that provide support at the periphery of the parasite. Specific subregions of the IMC carry out distinct roles in replication, motility, and host cell invasion. Building on our previous in vivo biotinylation (BioID) experiments of the IMC, we identified here a novel protein that localizes to discrete puncta that are embedded in the parasite's cytoskeleton along the IMC sutures. Gene knockout analysis showed that loss of the protein results in defects in cytoskeletal suture protein targeting, cytoskeletal integrity, parasite morphology, and host cell invasion. We then used deletion analyses to identify a domain in the N terminus of the protein that is critical for both localization and function. Finally, we used the protein as bait for in vivo biotinylation, which identified several other proteins that colocalize in similar spot-like patterns. These putative interactors include several proteins that are implicated in membrane trafficking and are also associated with the cytoskeleton. Together, these data reveal an unexpected link between the IMC sutures and membrane trafficking elements of the parasite and suggest that the suture puncta are likely a portal for trafficking cargo across the IMC. IMPORTANCE The inner membrane complex (IMC) is a peripheral membrane and cytoskeletal system that is organized into intriguing rectangular plates at the periphery of the parasite. The IMC plates are delimited by an array of IMC suture proteins that are tethered to both the membrane and the cytoskeleton and are thought to provide structure to the organelle. Here, we identified a protein that forms discrete puncta that are embedded in the IMC sutures, and we show that it is important for the proper sorting of a group of IMC suture proteins as well as maintaining parasite shape and IMC cytoskeletal integrity. Intriguingly, proximity labeling experiments identified several proteins that are involved in membrane trafficking or endocytosis, suggesting that the IMC puncta provide a gateway for transporting molecules across the structure.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Cell Membrane/chemistry , Cells, Cultured , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Fibroblasts/cytology , Foreskin , Humans , Male , Membrane Proteins/metabolism , Protein Transport , Protozoan Proteins/metabolism , Toxoplasma/chemistry , Toxoplasma/metabolism
3.
Nat Commun ; 10(1): 4041, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492901

ABSTRACT

Members of the Apicomplexa phylum, including Plasmodium and Toxoplasma, have two types of secretory organelles (micronemes and rhoptries) whose sequential release is essential for invasion and the intracellular lifestyle of these eukaryotes. During invasion, rhoptries inject an array of invasion and virulence factors into the cytoplasm of the host cell, but the molecular mechanism mediating rhoptry exocytosis is unknown. Here we identify a set of parasite specific proteins, termed rhoptry apical surface proteins (RASP) that cap the extremity of the rhoptry. Depletion of RASP2 results in loss of rhoptry secretion and completely blocks parasite invasion and therefore parasite proliferation in both Toxoplasma and Plasmodium. Recombinant RASP2 binds charged lipids and likely contributes to assembling the machinery that docks/primes the rhoptry to the plasma membrane prior to fusion. This study provides important mechanistic insight into a parasite specific exocytic pathway, essential for the establishment of infection.


Subject(s)
Carrier Proteins/metabolism , Organelles/metabolism , Phospholipids/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Exocytosis , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/parasitology , Host-Parasite Interactions , Humans , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Parasites/metabolism , Parasites/ultrastructure , Phospholipids/chemistry , Protozoan Proteins/genetics
4.
Sci Rep ; 8(1): 10964, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30006618

ABSTRACT

This paper has been retracted at the request of the authors.

5.
Sci Rep ; 7(1): 3768, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28630403

ABSTRACT

The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. We have established a system specifically designed for Neospora caninum, and used this system as a heterologous platform for the expression of foreign genes. Plasmid constructs containing fluorescent proteins or targeted genes of Toxoplasma gondii, driven by N. caninum promoters, have yielded robust expression and correct trafficking of target gene products as assessed by immunofluorescence assays and Western blot analyses. Using this approach, we here demonstrated that N. caninum expressing T. gondii's GRA15 and ROP16 kinase are biologically active and induced immunological phenotypes consistent with T. gondii strains. N. caninum expressing TgGRA15 differentially disturbed the NF-κB pathway, inducing an increased IL-12 production. On the other hand, N. caninum expressing TgROP16 induced host STAT3 phosphorylation and consequent reduction of IL-12 synthesis. These results indicate that heterologous gene expression in N. caninum is a useful tool for the study of specific gene functions and may allow the identification of antigenic targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. Additionally, these observations may prove to be useful for the development of vaccine protocols to control toxoplasmosis and/or neosporosis.

6.
Cell Microbiol ; 19(4)2017 04.
Article in English | MEDLINE | ID: mdl-27696623

ABSTRACT

The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity-dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin-dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3-null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.


Subject(s)
Protozoan Proteins/physiology , Toxoplasma/ultrastructure , Cells, Cultured , Female , Gene Knockout Techniques , Host-Parasite Interactions , Humans , Phosphatidate Phosphatase/physiology , Phosphatidate Phosphatase/ultrastructure , Protozoan Proteins/ultrastructure , Toxoplasma/physiology , Virulence
7.
Cell Host Microbe ; 18(5): 621-33, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26567513

ABSTRACT

Protein ubiquitination plays key roles in protein turnover, cellular signaling, and intracellular transport. The genome of Toxoplasma gondii encodes ubiquitination machinery, but the roles of this posttranslational modification (PTM) are unknown. To examine the prevalence and function of ubiquitination in T. gondii, we mapped the ubiquitin proteome of tachyzoites. Over 500 ubiquitin-modified proteins, with almost 1,000 sites, were identified on proteins with diverse localizations and functions. Enrichment analysis demonstrated that 35% of ubiquitinated proteins are cell-cycle regulated. Unexpectedly, most classic cell-cycle regulators conserved in T. gondii were not detected in the ubiquitinome. Furthermore, many ubiquitinated proteins localize to the cytoskeleton and inner membrane complex, a structure beneath the plasma membrane facilitating division and host invasion. Comparing the ubiquitinome with other PTM proteomes reveals waves of PTM enrichment during the cell cycle. Thus, T. gondii PTMs are implicated as critical regulators of cell division and cell-cycle transitions.


Subject(s)
Cell Cycle , Protein Processing, Post-Translational/physiology , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Ubiquitination , Foreskin , Humans , Hydrophobic and Hydrophilic Interactions , Male , Phylogeny , Proteome/analysis , Protozoan Proteins/analysis , Toxoplasma/cytology , Toxoplasma/growth & development , Ubiquitin/analysis , Ubiquitin/metabolism
8.
IUCrJ ; 2(Pt 5): 575-83, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306199

ABSTRACT

A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

9.
Pathog Dis ; 73(1): 1-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25663342

ABSTRACT

Studies of the chlamydial protease CPAF have been complicated by difficulties in distinguishing bona fide intracellular proteolysis from in vitro proteolysis. This confounding issue has been attributed to CPAF activity in lysates from Chlamydia-infected cells. We compared three methods that have been used to inhibit in vitro CPAF-mediated proteolysis: (1) pre-treatment of infected cells with the inhibitor clasto-lactacystin, (2) direct cell lysis in 8 M urea and (3) direct lysis in hot 1% SDS buffer. We identified a number of experimental conditions that reduce the effectiveness of each method in preventing CPAF activity during lysate preparation. The amount of in vitro proteolysis in a lysate was variable and depended on factors such as the specific substrate and the time in the intracellular infection. Additionally, we demonstrated for the first time that artifactual CPAF activity is induced before cell lysis by standard cell detachment methods, including trypsinization. Protein analysis of Chlamydia-infected cells therefore requires precautions to inhibit CPAF activity during both cell detachment and lysate preparation, followed by verification that the cell lysates do not contain residual CPAF activity. These concerns about artifactual proteolysis extend beyond studies of CPAF function because they have the potential to affect the analyses of host and chlamydial proteins from Chlamydia-infected cells.


Subject(s)
Chlamydia/chemistry , Endopeptidases/metabolism , Epithelial Cells/chemistry , Epithelial Cells/microbiology , Host-Pathogen Interactions , Protease Inhibitors/metabolism , Proteome/analysis , Cytological Techniques/methods , HeLa Cells , Humans , Lactones/metabolism , Sodium Dodecyl Sulfate/metabolism , Urea/metabolism
10.
mBio ; 6(1): e02357-14, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25691595

ABSTRACT

UNLABELLED: The inner membrane complex (IMC) of Toxoplasma gondii is a peripheral membrane system that is composed of flattened alveolar sacs that underlie the plasma membrane, coupled to a supporting cytoskeletal network. The IMC plays important roles in parasite replication, motility, and host cell invasion. Despite these central roles in the biology of the parasite, the proteins that constitute the IMC are largely unknown. In this study, we have adapted a technique named proximity-dependent biotin identification (BioID) for use in T. gondii to identify novel components of the IMC. Using IMC proteins in both the alveoli and the cytoskeletal network as bait, we have uncovered a total of 19 new IMC proteins in both of these suborganellar compartments, two of which we functionally evaluate by gene knockout. Importantly, labeling of IMC proteins using this approach has revealed a group of proteins that localize to the sutures of the alveolar sacs that have been seen in their entirety in Toxoplasma species only by freeze fracture electron microscopy. Collectively, our study greatly expands the repertoire of known proteins in the IMC and experimentally validates BioID as a strategy for discovering novel constituents of specific cellular compartments of T. gondii. IMPORTANCE: The identification of binding partners is critical for determining protein function within cellular compartments. However, discovery of protein-protein interactions within membrane or cytoskeletal compartments is challenging, particularly for transient or unstable interactions that are often disrupted by experimental manipulation of these compartments. To circumvent these problems, we adapted an in vivo biotinylation technique called BioID for Toxoplasma species to identify binding partners and proximal proteins within native cellular environments. We used BioID to identify 19 novel proteins in the parasite IMC, an organelle consisting of fused membrane sacs and an underlying cytoskeleton, whose protein composition is largely unknown. We also demonstrate the power of BioID for targeted discovery of proteins within specific compartments, such as the IMC cytoskeleton. In addition, we uncovered a new group of proteins localizing to the alveolar sutures of the IMC. BioID promises to reveal new insights on protein constituents and interactions within cellular compartments of Toxoplasma.


Subject(s)
Cell Membrane/chemistry , Parasitology/methods , Proteome/analysis , Protozoan Proteins/analysis , Staining and Labeling/methods , Toxoplasma/chemistry , Chemistry Techniques, Analytical/methods , Cytological Techniques/methods , Gene Knockout Techniques , Toxoplasma/genetics
11.
PLoS Pathog ; 10(3): e1004025, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24651769

ABSTRACT

Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion.


Subject(s)
Cell Membrane/parasitology , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Toxoplasmosis/metabolism , Cell Membrane/metabolism , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/microbiology , Gene Knockdown Techniques , Humans , Toxoplasma/metabolism
12.
PLoS Pathog ; 8(8): e1002842, 2012.
Article in English | MEDLINE | ID: mdl-22876181

ABSTRACT

Bacteria in the genus Chlamydia are major human pathogens that cause an intracellular infection. A chlamydial protease, CPAF, has been proposed as an important virulence factor that cleaves or degrades at least 16 host proteins, thereby altering multiple cellular processes. We examined 11 published CPAF substrates and found that there was no detectable proteolysis when CPAF activity was inhibited during cell processing. We show that the reported proteolysis of these putative CPAF substrates was due to enzymatic activity in cell lysates rather than in intact cells. Nevertheless, Chlamydia-infected cells displayed Chlamydia-host interactions, such as Golgi reorganization, apoptosis resistance, and host cytoskeletal remodeling, that have been attributed to CPAF-dependent proteolysis of host proteins. Our findings suggest that other mechanisms may be responsible for these Chlamydia-host interactions, and raise concerns about all published CPAF substrates and the proposed roles of CPAF in chlamydial pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia Infections/enzymology , Chlamydia trachomatis/physiology , Endopeptidases/metabolism , Host-Pathogen Interactions , Apoptosis/genetics , Bacterial Proteins/genetics , Chlamydia Infections/genetics , Endopeptidases/genetics , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , HeLa Cells , Humans , Proteolysis , Substrate Specificity
13.
J Bacteriol ; 193(23): 6733-41, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21965565

ABSTRACT

Chlamydial heat shock proteins have important roles in Chlamydia infection and immunopathogenesis. Transcription of chlamydial heat shock genes is controlled by the stress response regulator HrcA, which binds to its cognate operator CIRCE, causing repression by steric hindrance of RNA polymerase. All Chlamydia spp. encode an HrcA protein that is larger than other bacterial orthologs because of an additional, well-conserved C-terminal region. We found that this unique C-terminal tail decreased HrcA binding to CIRCE in vitro as well as HrcA-mediated transcriptional repression in vitro and in vivo. When we isolated HrcA from chlamydiae, we only detected the full-length protein, but we found that endogenous HrcA had a higher binding affinity for CIRCE than recombinant HrcA. To examine this difference further, we tested the effect of the heat shock protein GroEL on the function of HrcA since endogenous chlamydial HrcA has been previously shown to associate with GroEL as a complex. GroEL enhanced the ability of HrcA to bind CIRCE and to repress transcription in vitro, but this stimulatory effect was greater on full-length HrcA than HrcA lacking the C-terminal tail. These findings demonstrate that the novel C-terminal tail of chlamydial HrcA is an inhibitory region and provide evidence that its negative effect on repressor function can be counteracted by GroEL. These results support a model in which GroEL functions as a corepressor that interacts with HrcA to regulate chlamydial heat shock genes.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlamydia trachomatis/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Cell Line , Chaperonin 60/genetics , Chaperonin 60/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/chemistry , Chlamydia trachomatis/genetics , Humans , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Repressor Proteins/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...