Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Huazhong Univ Sci Technolog Med Sci ; 35(1): 111-116, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25673203

ABSTRACT

The lentivirus-mediated uPA interference in the proliferation, apoptosis, and secretion of osteoarthritic chondrocytes was examined in this study. Cells were obtained from the cartilage tissues of New Zealand white rabbits. They were cultured with interleukin (IL)-1ß (10 ng/mL) for 24 h and then divided into three groups: uPA-siRNA group (cells transfected with uPA-siRNA lentiviruses), blank control group (untreated cells), and negative control group (cells transfected with empty vectors). Western blotting and real-time quantitative reverse transcription-PCR (RT-QPCR) were performed to detect the protein and mRNA expression levels of uPA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13 and MMP-14 in osteoarthritic chondrocytes. Cell Counting Kit-8, flow cytometry, and colony formation assay were used to examine the proliferation and apoptosis of chondrocytes. The results showed that after uPA-siRNA transfection, the protein and mRNA expression levels of uPA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13, and MMP-14 were significantly decreased (P<0.05 for MMP-1, MMP-9, MMP-10 and MMP-14, P<0.01 for uPA, MMP-3 and MMP-13). Cell proliferation and colony formation rate were significantly higher and the cell apoptosis rate was significantly lower in uPA-siRNA group than in control groups (P<0.01). The proportion of cells in G0/G1 phase was markedly increased and that in the S phase decreased, and the cell cycle was arrested at the G1/S phase in the control group. In the uPA-siRNA group, the proportion of cells in the S phase was significantly increased, resulting in a different proportion of cells in cell cycle phase (P<0.01). It was suggested that the down-regulation of uPA gene could inhibit the expression of MMPs protein and cell apoptosis, increase the proliferation and colony formation of osteoarthritic chondrocytes.


Subject(s)
Apoptosis , Cell Proliferation , Chondrocytes/cytology , Gene Silencing , Lentivirus/genetics , Matrix Metalloproteinases/metabolism , Urokinase-Type Plasminogen Activator/genetics , Animals , Cells, Cultured , Chondrocytes/enzymology , Rabbits
2.
Chin Med J (Engl) ; 125(22): 3947-51, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23158122

ABSTRACT

BACKGROUND: Minimally invasive techniques are gaining wide-spread application in lumbar fusion surgery, because they may have advantage over conventional open surgery in approach-related morbidity. This research was aimed to evaluate the safety and accuracy of the techniques of minimally invasive transforaminal lumbar interbody fusion by using a computer-assisted spinal navigation system combined with electromyography monitoring. METHODS: Sixteen patients underwent minimally invasive transforaminal lumbar interbody fusion. A computer-assisted spinal navigation system and electromyography were used for guiding pedicle screw placement. The operative duration, blood loss, complications, and fluoroscopic time were recorded. Clinical outcome was assessed by Visual Analog Scale and Oswestry Disability Index. Radiographic images were obtained to evaluate the accuracy of pedicle screw placement and fusion rates. RESULTS: The Visual Analog Scale and Oswestry Disability Index scores were vastly improved postoperatively. A total of 64 pedicle screws were implanted and three were regarded as misplacement by post-operative CT scan. Three screw trajectories were adjusted according to intra-operative stimulus-evoked electromyography monitoring. The average fluoroscopy time in each patient was 31.8 seconds, which equals to 7.9 seconds per pedicle screw. No patients had instrument related neurological complications, infection, implant failure or revision. Successful fusion was found in all patients. CONCLUSIONS: The combination of navigation system and real-time electromyography monitoring can make the minimally invasive operation more safe and accurate while decreasing radiation exposure time of the medical staff and patient and minimizing the chance and the degree of the pedicle screw misplacement.


Subject(s)
Electromyography/methods , Lumbar Vertebrae/surgery , Monitoring, Intraoperative/methods , Spinal Fusion/methods , Adult , Aged , Bone Screws , Humans , Middle Aged , Spine
SELECTION OF CITATIONS
SEARCH DETAIL
...