Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38833147

ABSTRACT

PURPOSE: The objective of the study is to test the efficacy of cyclopentenyl cytosine (CPEC)-coated stents on blocking artery stenosis, promoting reendothelialization, and reducing thrombosis. METHODS: Scanning electron microscopy was employed to observe the morphological characteristics of stents coated with a mixture of CPEC and poly(lactic-co-glycolic acid) (PLGA) copolymer. PLGA has been used in various Food and Drug Administration (FDA)-approved therapeutic devices. In vitro release of CPEC was tested to measure the dynamic drug elution. Comparison between CPEC- and everolimus-coated stents on neointimal formation and thrombosis formation was conducted after being implanted into the human internal mammary artery and grafted to the mouse aorta. RESULTS: Optimization in stent coating resulted in uniform and consistent coating with minimal variation. In vitro drug release tests demonstrated a gradual and progressive discharge of CPEC. CPEC- or everolimus-coated stents caused much less stenosis than bare-metal stents. However, CPEC stent-implanted arteries exhibited enhanced reendothelialization compared to everolimus stents. Mechanistically, CPEC-coated stents reduced the proliferation of vascular smooth muscle cells while simultaneously promoting reendothelialization. More significantly, unlike everolimus-coated stents, CPEC-coated stents showed a significant reduction in thrombosis formation even in the absence of ongoing anticoagulant treatment. CONCLUSIONS: The study establishes CPEC-coated stent as a promising new device for cardiovascular interventions. By enhancing reendothelialization and preventing thrombosis, CPEC offers advantages over conventional approaches, including the elimination of the need for anti-clogging drugs, which pave the way for improved therapeutic outcomes and management of atherosclerosis-related medical procedures.

2.
Acta Biomater ; 177: 165-177, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38354873

ABSTRACT

Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (Ttrans). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, Ttrans varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below Ttrans with fractural strain (εf) of 170 %-200 %. Above Ttrans, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, εf of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.


Subject(s)
Elastomers , Tissue Scaffolds , Humans , Elastomers/chemistry , Tissue Scaffolds/chemistry , Glycerol , Absorbable Implants , Laurates , Printing, Three-Dimensional , Acrylates
3.
Environ Int ; 130: 104885, 2019 09.
Article in English | MEDLINE | ID: mdl-31195220

ABSTRACT

Animal and epidemiological studies demonstrated association of persistent exposure of TCDD, an endocrine disrupting chemical, to susceptibility of type 2 diabetes (T2D). High doses of TCDD were commonly employed in experimental animals to illustrate its diabetogenic effects. Data linking the epigenetic effects of low doses of TCDD on embryonic cells to T2D susceptibility risks is very limited. To address whether low dose exposure to TCDD would affect pancreatic development, hESCs pretreated with TCDD at concentrations similar to human exposure were differentiated towards pancreatic lineage cells, and their global DNA methylation patterns were determined. Our results showed that TCDD-treated hESCs had impaired pancreatic lineage differentiation potentials and altered global DNA methylation patterns. Four of the hypermethylated genes (PRKAG1, CAPN10, HNF-1B and MAFA) were validated by DNA bisulfite sequencing. PRKAG1, a regulator in the AMPK signaling pathway critical for insulin secretion, was selected for further functional study in the rat insulinoma cell line, INS-1E cells. TCDD treatment induced PRKAG1 hypermethylation in hESCs, and the hypermethylation was maintained after pancreatic progenitor cells differentiation. Transient Prkag1 knockdown in the INS-1E cells elevated glucose stimulated insulin secretions (GSIS), possibly through mTOR signaling pathway. The current study suggested that early embryonic exposure to TCDD might alter pancreatogenesis, increasing the risk of T2D.


Subject(s)
Embryonic Stem Cells/drug effects , Environmental Pollutants/toxicity , Insulin-Secreting Cells/drug effects , Polychlorinated Dibenzodioxins/toxicity , Animals , Cell Differentiation/drug effects , Cell Line , DNA Methylation/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Humans , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Rats
4.
Hum Reprod ; 30(11): 2614-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26350609

ABSTRACT

STUDY QUESTION: Can human embryonic stem cell-derived trophoblastic spheroids be used to study the early stages of implantation? SUMMARY ANSWER: We generated a novel human embryonic stem cell-derived trophoblastic spheroid model mimicking human blastocysts in the early stages of implantation. WHAT IS KNOWN ALREADY: Both human embryos and choriocarcinoma cell line derived spheroids can attach onto endometrial cells and are used as models to study the early stages of implantation. However, human embryos are limited and the use of cancer cell lines for spheroid generation remains sub-optimal for research. STUDY DESIGN, SIZE, DURATION: Experimental induced differentiation of human embryonic stem cells into trophoblast and characterization of the trophoblast. PARTICIPANTS/MATERIALS, SETTING, METHODS: Trophoblastic spheroids (BAP-EB) were generated by inducing differentiation of a human embryonic stem cell line, VAL3 cells with bone morphogenic factor-4, A83-01 (a TGF-ß inhibitor), and PD173074 (a FGF receptor-3 inhibitor) after embryoid body formation. The expressions of trophoblastic markers and hCG levels were studied by real-time PCR and immunohistochemistry. BAP-EB attachment and invasion assays were performed on different cell lines and primary endometrial cells. MAIN RESULTS AND THE ROLE OF CHANCE: After 48 h of induced differentiation, the BAP-EB resembled early implanting human embryos in terms of size and morphology. The spheroids derived from embryonic stem cells (VAL3), but not from several other cell lines studied, possessed a blastocoel-like cavity. BAP-EB expressed several markers of trophectoderm of human blastocysts on Day 2 of induced differentiation. In the subsequent days of differentiation, the cells of the spheroids differentiated into trophoblast-like cells expressing trophoblastic markers, though at levels lower than that in the primary trophoblasts or in a choriocarcinoma cell line. On Day 3 of induced differentiation, BAP-EB selectively attached onto endometrial epithelial cells, but not other non-endometrial cell lines or an endometrial cell line that had lost its epithelial character. The attachment rates of BAP-EB was significantly higher on primary endometrial epithelial cells (EEC) taken from 7 days after hCG induction of ovulation (hCG+7 day) when compared with that from hCG+2 day. The spheroids also invaded through Ishikawa cells and the primary endometrial stromal cells in the co-culture. LIMITATIONS, REASONS FOR CAUTION: The attachment rates of BAP-EB were compared between EEC obtained from Day 2 and Day 7 of the gonadotrophin stimulated cycle, but not the natural cycles. WIDER IMPLICATIONS OF THE FINDINGS: BAP-EB have the potential to be used as a test for predicting endometrial receptivity in IVF cycles and provide a novel approach to study early human implantation, trophoblastic cell differentiation and trophoblastic invasion into human endometrial cells.


Subject(s)
Embryo Implantation , Human Embryonic Stem Cells , Models, Biological , Spheroids, Cellular , Trophoblasts , Cell Line , Humans
5.
PLoS One ; 7(9): e45633, 2012.
Article in English | MEDLINE | ID: mdl-23029150

ABSTRACT

Forced-expression of transcription factors can reprogram somatic cells into induced pluripotent stem cells (iPSC). Recent studies show that the reprogramming efficiency can be improved by inclusion of small molecules that regulate chromatin modifying enzymes. We report here that sirtuin 1 (SIRT1), a member of the sirtuin family of NAD(+)-dependent protein deacetylases, is involved in iPSC formation. By using an efficient mouse secondary fibroblast reprogramming system with doxycycline (DOX) inducible Yamanaka's transcription factors delivered by piggyBac (PB) transposition (2°F/1B MEF), we show that SIRT1 knockdown decreased while resveratrol (RSV) increased the efficiency of iPSC formation. The treatments were associated with altered acetylated p53 and its downstream Nanog but not p21 expression. The stimulatory effect was also confirmed by SIRT1 over-expression, which stimulated the formation of colonies with induced Nanog and reduced p21 expression. Furthermore, the effects of RSV and SIRT1 knockdown on reprogramming were most pronounced during the initiation phase of reprogramming. MicroRNA-34a is a known regulator of SIRT1. Its inhibitor increased, while its mimics reduced iPSC formation. The stimulatory effect of SIRT1 during reprogramming was also confirmed in the primary MEF. RSV increased while tenovin-6, a small molecule that activates p53 through SIRT1 inhibition, suppressed reprogramming. In conclusion, SIRT1 enhances iPSC generation, in part, through deacetylation of p53, inhibition of p21 and enhancement of Nanog expression.


Subject(s)
Cell Differentiation/physiology , Embryo, Mammalian/cytology , MicroRNAs/metabolism , Pluripotent Stem Cells/cytology , Sirtuin 1/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Blotting, Western , Cells, Cultured , Down-Regulation , Fibroblasts/cytology , Humans , Mice , Polymerase Chain Reaction , Up-Regulation
6.
Cell Tissue Res ; 350(2): 289-303, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22864984

ABSTRACT

Human embryonic stem cells (hESCs) have great potential for regenerative medicine as they have self-regenerative and pluripotent properties. Feeder cells or their conditioned medium are required for the maintenance of hESC in the undifferentiated state. Feeder cells have been postulated to produce growth factors and extracellular molecules for maintaining hESC in culture. The present study has aimed at identifying these molecules. The gene expression of supportive feeder cells, namely human foreskin fibroblast (hFF-1) and non-supportive human lung fibroblast (WI-38) was analyzed by microarray and 445 genes were found to be differentially expressed. Gene ontology analysis showed that 20.9% and 15.5% of the products of these genes belonged to the extracellular region and regulation of transcription activity, respectively. After validation of selected differentially expressed genes in both human and mouse feeder cells, transforming growth factor α (TGFα) was chosen for functional study. The results demonstrated that knockdown or protein neutralization of TGFα in hFF-1 led to increased expression of early differentiation markers and lower attachment rates of hESC. More importantly, TGFα maintained pluripotent gene expression levels, attachment rates and pluripotency by the in vitro differentiation of H9 under non-supportive conditions. TGFα treatment activated the p44/42 MAPK pathway but not the PI3K/Akt pathway. In addition, TGFα treatment increased the expression of pluripotent markers, NANOG and SSEA-3 but had no effects on the proliferation of hESCs. This study of the functional role of TGFα provides insights for the development of clinical grade hESCs for therapeutic applications.


Subject(s)
Embryonic Stem Cells/physiology , Fibroblasts/physiology , Transforming Growth Factor alpha/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Foreskin/cytology , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lung/cytology , Male , Mice , NIH 3T3 Cells , Transfection , Transforming Growth Factor alpha/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...