Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781516

ABSTRACT

Iron minerals are widespread in earth's surface water and soil. Recent studies have revealed that under sunlight irradiation, iron minerals are photoactive on producing reactive oxygen species (ROS), a group of key species in regulating elemental cycling, microbe inactivation, and pollutant degradation. In nature, iron minerals exhibit varying crystallinity under different hydrogeological conditions. While crystallinity is a known key parameter determining the overall activity of iron minerals, the impact of iron mineral crystallinity on photochemical ROS production remains unknown. Here, we assessed the photochemical ROS production from ferrihydrites with different degrees of crystallinity. All examined ferrihydrites demonstrated photoactivity under irradiation, resulting in the generation of hydrogen peroxide (H2O2) and hydroxyl radical (•OH). The photochemical ROS production from ferrihydrites increased with decreasing ferrihydrite crystallinity. The crystallinity-dependent photochemical •OH production was primarily attributed to conduction band reduction reactions, with the reduction of O2 by conduction band electrons being the rate-limiting key process. Conversely, the crystallinity of iron minerals had a negligible influence on photon-to-electron conversion efficiency or surface Fenton-like activity. The difference in ROS productions led to a discrepant degradation efficiency of organic pollutants on iron mineral surfaces. Our study provides valuable insights into the crystallinity-dependent ROS productions from iron minerals in natural systems, emphasizing the significance of iron mineral photochemistry in natural sites with abundant lower-crystallinity iron minerals such as wetland water and surface soils.

2.
Environ Sci Technol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805641

ABSTRACT

Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 µg kg-1 (range: 9.7-9860 µg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.

3.
Environ Sci Technol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810213

ABSTRACT

The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 µmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 µmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.

4.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720447

ABSTRACT

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Subject(s)
Seawater , Water Purification , Water Purification/methods , Seawater/chemistry , Sunlight , Salinity , Salts/chemistry , Sodium Chloride/chemistry
5.
IEEE Trans Image Process ; 33: 3227-3241, 2024.
Article in English | MEDLINE | ID: mdl-38691435

ABSTRACT

The statistical regularities of natural images, referred to as natural scene statistics, play an important role in no-reference image quality assessment. However, it has been widely acknowledged that screen content images (SCIs), which are typically computer generated, do not hold such statistics. Here we make the first attempt to learn the statistics of SCIs, based upon which the quality of SCIs can be effectively determined. The underlying mechanism of the proposed approach is based upon the mild assumption that the SCIs, which are not physically acquired, still obey certain statistics that could be understood in a learning fashion. We empirically show that the statistics deviation could be effectively leveraged in quality assessment, and the proposed method is superior when evaluated in different settings. Extensive experimental results demonstrate the Deep Feature Statistics based SCI Quality Assessment (DFSS-IQA) model delivers promising performance compared with existing NR-IQA models and shows a high generalization capability in the cross-dataset settings. The implementation of our method is publicly available at https://github.com/Baoliang93/DFSS-IQA.

6.
J Hazard Mater ; 470: 134115, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626676

ABSTRACT

EDTA has been widely utilized as a chelating agent in soil heavy metal remediation, due to its strong coordination capability. Electrochemical deposition is a promising avenue to treat soil washing effluent. However, the impact of advanced electrochemical techniques on EDTA remains incompletely understood. Herein, we present a pioneering approach, utilizing a dual-chamber electrolytic cell and alternating current (AC) power supply. This approach achieves concurrent removal of M-EDTA while efficiently recovering heavy metal and recycling EDTA. Results demonstrate AC displays superior heavy metal removal capability for Cu, Pb, and Cd compare to direct current (DC), with EDTA decomposition mainly occurring in the anolyte. Substituting DC with AC and employing the dual-chamber electrolytic cell significantly enhances EDTA recovery efficiency from 47% to an impressive 96.8%. XPS and Raman spectra reveal an enhanced oxidative surface of the graphite anode under AC, which diminishes the decomposition of EDTA. Long-term experiments validate that this strategy boosts EDTA cyclability to 20 cycles with an outstanding 84% recovery efficiency and negligible electrode corrosion, surpassing the 8 cycles under the traditional strategy. This study innovatively combines cell design and electrochemical techniques, remarkably improving the reusability of EDTA and anode, offering valuable insights for chelate-related applications.

7.
Environ Sci Technol ; 58(15): 6763-6771, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38572777

ABSTRACT

Understanding interfacial interactions of graphene oxide (GO) is important to evaluate its colloidal behavior and environmental fate. Single-layer GO is the fundamental unit of GO colloids, and its interfacial aqueous layers critically dictate these interfacial interactions. However, conventional techniques like X-ray diffraction are limited to multilayer systems and are inapplicable to single-layer GO. Therefore, our study employed atomic force microscopy to precisely observe the in situ dynamic behaviors of interfacial aqueous layers on single-layer GO. The interfacial aqueous layer height was detected at the subnanometer level. In real-time monitoring, the single-layer height increased from 1.17 to 1.70 nm within 3 h immersion. This sluggish process is different from the rapid equilibration of multilayer GO in previous studies, underscoring a gradual transition in hydration kinetics. Ion strength exhibited negligible influence on the single-layer height, suggesting a resilient response of the interfacial aqueous layer to ion-related perturbations due to intricate ion interactions and electrical double-layer compression. Humic acid led to a substantial increase in the interfacial aqueous layers, improving the colloidal stability of GO and augmenting its potential for migration. These findings hold considerable significance regarding the environmental behaviors of the GO interfacial aqueous layer in ion- and organic-rich water and soil.


Subject(s)
Graphite , Water , Microscopy, Atomic Force , Colloids
8.
J Mater Chem B ; 12(17): 4208-4216, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38595308

ABSTRACT

The primary focal point in the fabrication of microfiltration membranes revolves around mitigating issues of low permeability stemming from the initial design as well as countering biofouling tendencies. This work aimed to address these issues by synthesizing an antibacterial capsaicin derivative (CD), which was then grafted to the poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-polymethacrylic acid (P(VDF-CTFE)-g-PMAA) matrix polymer, resulting in an antibacterial polymer (PD). Notably, both CD and PD demonstrated low cytotoxicities. Utilizing PD, a microfiltration membrane (MA) was successfully prepared through non-solvent-induced phase inversion. The pore sizes of the MA membrane were mainly concentrated at around 436 nm, while the pure water flux of MA reached an impressive value of 62 ± 0.17 Lm-2 h-1 at 0.01 MPa. MA exhibited remarkable efficacy in eradicating both Gram-negative (E. coli) and Gram-positive bacteria (Bacillus subtilis) from its surface. Compared with M1 prepared from P(VDF-CTFE), MA exhibited a lower flux decay rate (41.00% vs. 76.03%) and a higher flux recovery rate (84.95% vs. 46.54%) after three cycles. Overall, this research represents a significant step towards the development of a microfiltration membrane with inherent stable anti-biofouling capability to enhance filtration.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Biofouling , Capsaicin , Escherichia coli , Membranes, Artificial , Biofouling/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Capsaicin/chemistry , Capsaicin/pharmacology , Bacillus subtilis/drug effects , Microbial Sensitivity Tests , Filtration , Surface Properties , Particle Size
9.
Environ Sci Technol ; 58(8): 3838-3848, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38351523

ABSTRACT

Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.


Subject(s)
Water Pollutants, Chemical , Water Purification , Disinfection , Chlorine/chemistry , Chlorine/metabolism , Halogenation , Hydrogen Peroxide , Soil , Ecosystem , Anti-Bacterial Agents , Catalysis
10.
J Hazard Mater ; 466: 133641, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309157

ABSTRACT

Manganese (Mn) redox cycling and phase variation reactions play a crucial role in natural water settings. Rhodochrosite (MnCO3), a mineral commonly found in oxygen-deprived environments, develops a surface oxide film upon exposure to oxygen. This Mn oxide film significantly influences the fate of nanoparticles within its proximity. Employing atomic force microscopy (AFM), this study examined the growth of the Mn oxide film on MnCO3 and the encapsulation of cadmium sulfide nanoparticles (CdS-NPs). Results revealed the gradual development of a nanometer-thick oxide film on MnCO3 over time in aerobic conditions, with the rate of film formation correlated to the solution's ionic strength. The oxide film on MnCO3 encapsulated pre-adsorbed CdS-NPs, either through embedding or covering. Intriguingly, CdS-NPs were found to enhance the growth of the Mn oxide film, contributing to the fixation of CdS-NPs. Furthermore, an ultrasonic desorption protocol verified the stability of CdS-NPs encapsulated by the Mn oxide film on MnCO3. This study elucidates a novel mechanism for immobilizing CdS-NPs in aqueous oxidizing conditions, providing valuable insights into the behavior and distribution of toxic nanoparticles in environmental contexts. ENVIRONMENTAL IMPLICATION: This study classifies cadmium sulfide nanoparticles (CdS-NPs) as "hazardous material" due to the inherent toxicity of cadmium, posing risks to both ecological and human health. The research addresses environmental concerns by exploring the interaction between CdS-NPs and manganese (Mn) redox cycling. The formation of a Mn oxide film, encapsulating CdS-NPs, suggests a mechanism for limiting the dispersion of these hazardous nanoparticles in oxidizing water. This provides valuable insights for managing the environmental impact of CdS-NPs, offering a proactive strategy to mitigate their adverse effects in natural systems.

11.
Environ Sci Technol ; 58(6): 2808-2816, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38227742

ABSTRACT

Hydroxyl radical (•OH) is a powerful oxidant abundantly found in nature and plays a central role in numerous environmental processes. On-site detection of •OH is highly desirable for real-time assessments of •OH-centered processes and yet is restrained by a lack of an analysis system suitable for field applications. Here, we report the development of a flow-injection chemiluminescence analysis (FIA-CL) system for the continuous field detection of •OH. The system is based on the reaction of •OH with phthalhydrazide to generate 5-hydroxy-2,3-dihydro-1,4-phthalazinedione, which emits chemiluminescence (CL) when oxidatively activated by H2O2 and Cu3+. The FIA-CL system was successfully validated using the Fenton reaction as a standard •OH source. Unlike traditional absorbance- or fluorescence-based methods, CL detection could minimize interference from an environmental medium (e.g., organic matter), therefore attaining highly sensitive •OH detection (limits of detection and quantification = 0.035 and 0.12 nM, respectively). The broad applications of FIA-CL were illustrated for on-site 24 h detection of •OH produced from photochemical processes in lake water and air, where the temporal variations on •OH productions (1.0-12.2 nM in water and 1.5-37.1 × 107 cm-3 in air) agreed well with sunlight photon flux. Further, the FIA-CL system enabled field 24 h field analysis of •OH productions from the oxidation of reduced substances triggered by tidal fluctuations in coastal soils. The superior analytical capability of the FIA-CL system opens new opportunities for monitoring •OH dynamics under field conditions.


Subject(s)
Hydroxyl Radical , Luminescence , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Hydrogen Peroxide , Oxidation-Reduction , Water
12.
Sci Total Environ ; 916: 170414, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38272084

ABSTRACT

Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.

13.
ChemSusChem ; 17(6): e202301284, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37934454

ABSTRACT

Na superionic conductor (NASICON) materials hold promise as solid-state electrolytes due to their wide electrochemical stability and chemical durability. However, their limited ionic conductivity hinders their integration into sodium-ion batteries. The conventional approach to electrolyte design struggles with comprehending the intricate interactions of factors impacting conductivity, encompassing synthesis parameters, structural characteristics, and electronic descriptors. Herein, we explored the potential of machine learning in predicting ionic conductivity in NASICON. We compile a database of 211 datasets, covering 160 NASICON materials, and employ facile descriptors, including synthesis parameters, test conditions, molecular and structural attributes, and electronic properties. Random forest (RF) and neural network (NN) models were developed and optimized, with NN performing notably better, particularly with limited data (R2=0.820). Our analysis spotlighted the pivotal role of Na stoichiometric count in ionic conductivity. Furthermore, the NN algorithm highlighted the comparable significance of synthesis parameters to structural factors in determining conductivity. In contrast, the impact of electronegativity on doped elements appears less significant, underscoring the importance of dopant size and quantity. This work underscores the potential of machine learning in advancing NASICON electrolyte design for sodium-ion batteries, offering insights into conductivity drivers and a more efficient path to optimizing materials.

14.
Environ Sci Technol ; 58(1): 432-439, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38111081

ABSTRACT

Reactive oxygen species (ROS) are widespread in nature and play central roles in numerous biogeochemical processes and pollutant dynamics. Recent studies have revealed ROS productions triggered by electron transfer from naturally abundant reduced iron minerals to oxygen. Here, we report that ROS productions from pyrite oxidation exhibit a high facet dependence. Pyrites with various facet compositions displayed distinct efficiencies in producing superoxide (O2• -), hydrogen peroxide (H2O2), and hydroxyl radical (•OH). The 48 h •OH production rates varied by 3.1-fold from 11.7 ± 0.4 to 36.2 ± 0.6 nM h-1, showing a strong correlation with the ratio of the {210} facet. Such facet dependence in ROS productions primarily stems from the different surface electron-donating capacities (2.2-8.6 mmol e- g-1) and kinetics (from 1.2 × 10-4 to 5.8 × 10-4 s-1) of various faceted pyrites. Further, the Fenton-like activity also displayed 10.1-fold variations among faceted pyrites, contributing to the facet depedence of •OH productions. The facet dependence of ROS production can greatly affect ROS-driven pollutant transformations. As a paradigm, the degradation rates of carbamazepine, phenol, and bisphenol A varied by 3.5-5.3-fold from oxidation of pyrites with different facet compositions, where the kinetics were in good agreement with the pyrite {210} facet ratio. These findings highlight the crucial role of facet composition in determining ROS production and subsequent ROS-driven reactions during iron mineral oxidation.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Iron/chemistry , Oxidation-Reduction , Oxygen
15.
Environ Sci Technol ; 57(51): 21855-21865, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38086098

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) represent significant stress to organisms and are known to disrupt microbial community structure and function. Nevertheless, a detailed knowledge of the soil microbial community responding to PFAS stress at the metabolism level is required. Here we integrated UPLC-HRMS-based metabolomics data with 16S rRNA and ITS amplicon data across soil samples collected adjacent to a fluoropolymer production facility to directly identify the biochemical intermediates in microbial metabolic pathways and the interactions with microbial community structure under PFAS stress. A strong correlation between metabolite and microbial diversity was observed, which demonstrated significant variations in soil metabolite profiles and microbial community structures along with the sampling locations relative to the facility. Certain key metabolites were identified in the metabolite-PFAS co-occurrence network, functioning on microbial metabolisms including lipid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. These results provide novel insights into the impacts of PFAS contamination on soil metabolomes and microbiomes. We suggest that soil metabolomics is an informative and useful tool that could be applied to reinforce the chemical evidence on the disruption of microbial ecological traits.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Microbiota , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Fluorocarbons/analysis , Fluorocarbon Polymers
16.
J Am Chem Soc ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914533

ABSTRACT

Photochemical homolysis of hydrogen peroxide (H2O2) occurs widely in nature and is a key source of hydroxyl radicals (·OH). The kinetics of H2O2 photolysis play a pivotal role in determining the efficiency of ·OH production, which is currently mainly investigated in bulk systems. Here, we report considerably accelerated H2O2 photolysis at the air-water interface of microdroplets, with a rate 1.9 × 103 times faster than that in bulk water. Our simulations show that due to the trans quasiplanar conformational preference of H2O2 at the air-water interface compared to the bulk or gas phase, the absorption peak in the spectrum of H2O2 is significantly redshifted by 45 nm, corresponding to greater absorbance of photons in the sunlight spectrum and faster photolysis of H2O2. This discovery has great potential to solve current problems associated with ·OH-centered heterogeneous photochemical processes in aerosols. For instance, we show that accelerated H2O2 photolysis in microdroplets could lead to markedly enhanced oxidation of SO2 and volatile organic compounds.

17.
Environ Pollut ; 339: 122644, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827352

ABSTRACT

Anthropogenic-driven selenium (Se) contamination of natural waters has emerged as severe health and environmental concern. Lowering Se levels to safe limits of 40 µg-L-1 (recommended by WHO) presents a critical challenge for the scientific community, necessitating reliable and effective methods for Se removal. The primary obectives of this review are to evaluate the efficiency of different biosorbents in removing Se, understand the mechanism of adsorption, and identify the factors influencing the biosorption process. A comprehensive literature review is conducted to analyze various studies that have explored the use of modified biochars, iron oxides, and other non-conventional biosorbents for selenium removal. The assessed biosorbents include biomass, microalgae-based, alginate compounds, peats, chitosan, and biochar/modified biochar-based adsorbents. Quantitative data from the selected studies analyzed Se adsorption capacities of biosorbents, were collected considering pH, temperature, and environmental conditions, while highlighting advantages and limitations. The role of iron impregnation in enhancing the biosorption efficiency is investigated, and the mechanisms of Se adsorption on these biosorbents at different pH levels are discussed. A critical literature assessment reveals a robust understanding of the current state of Se biosorption and the effectiveness of non-conventional biosorbents for Se removal, providing crucial information for further research and practical applications in water treatment processes. By understanding the strengths and limitations of various biosorbents, this review is expected to scale-up targeted research on Se removal, promoting the development of innovative and cost-effective adsorbents, efficient and sustainable approaches for Se removal from water.


Subject(s)
Selenium , Water Pollutants, Chemical , Water Purification , Iron , Charcoal/chemistry , Temperature , Adsorption , Water Pollutants, Chemical/analysis , Water Purification/methods , Kinetics
18.
Water Res ; 246: 120674, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857008

ABSTRACT

Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Phenol , Phenols , Electrodes , Oxidation-Reduction , Hydrogen Peroxide
19.
Environ Sci Technol ; 57(38): 14407-14416, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37695219

ABSTRACT

Understanding the environmental transformation and fate of graphene oxide (GO) is critical to estimate its engineering applications and ecological risks. While there have been numerous investigations on the physicochemical stability of GO in prolonged air-exposed solution, the potential generation of reactive radicals and their impact on the structure of GO remain unexplored. In this study, using liquid-PeakForce-mode atomic force microscopy and quadrupole time-of-flight mass spectroscopy, we report that prolonged exposure of GO to the solution leads to the generation of nanopores in the 2D network and may even cause the disintegration of its bulk structure into fragment molecules. These fragments can assemble themselves into films with the same height as the GO at the interface. Further mediated electrochemical analysis supports that the electron-donating active components of GO facilitate the conversion of O2 to •O2- radicals on the GO surface, which are subsequently converted to H2O2, ultimately leading to the formation of •OH. We experimentally confirmed that attacks from •OH radicals can break down the C-C bond network of GO, resulting in the degradation of GO into small fragment molecules. Our findings suggest that GO can exhibit chemical instability when released into aqueous solutions for prolonged periods of time, undergoing transformation into fragment molecules through self-generated •OH radicals. This finding not only sheds light on the distinctive fate of GO-based nanomaterials but also offers a guideline for their engineering applications as advanced materials.


Subject(s)
Graphite , Hydrogen Peroxide , Electrons , Mass Spectrometry , Suspensions
20.
Environ Sci Technol ; 57(35): 13047-13055, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37607016

ABSTRACT

Solar desalination has shown great potential in alleviating global water scarcity. However, the trade-off between energy efficiency and salt rejection remains a challenge, restricting its practical applications. In this study, we report a three-dimensional nitrocellulose membrane-based evaporator featuring a high evaporation rate (1.5 kg m-2 h-1) and efficient salt precipitation at the edges. Additionally, the salt is isolated from the photothermal area of the evaporator and falls automatically with a salt recovery rate of 97 g m-2 h-1 in brine with 10 wt % salt content. The distinctive performance is attributed to the precise water supply control, which was adjusted by changing the resistance force and driven force in the evaporator. With a high evaporation rate, stable performance, and specific salt recovery ability, this solar evaporation structure holds great potential in water desalination and resource recovery.


Subject(s)
Fresh Water , Sodium Chloride , Recycling , Water , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...