Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 108(1): 40-54, 2021 10.
Article in English | MEDLINE | ID: mdl-34252236

ABSTRACT

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Subject(s)
Genome, Plant/genetics , Zea mays/genetics , Crops, Agricultural , Endosperm/genetics , Endosperm/metabolism , Inbreeding , Mutation , Phenotype , Plant Breeding , Seed Bank , Seeds/genetics , Seeds/metabolism , Starch/metabolism , Zea mays/metabolism
2.
Mol Breed ; 41(2): 9, 2021 Feb.
Article in English | MEDLINE | ID: mdl-37309474

ABSTRACT

Leaf color mutant is an important resource for studying chlorophyll biosynthesis and chloroplast development in maize. Here, a novel mutant zebra crossband 9 (zb9) with transverse green-/yellow-striped leaves appeared from ten-leaf stage until senescence was identified from mutant population derived from the maize inbred line RP125. The yellow section of the zb9 mutant displays a reduction of chlorophyll and carotenoid contents, as well as impaired chloroplast structure. Genetic analysis showed that the zb9 mutant phenotype was caused by a single recessive gene. Map-based cloning demonstrated that the zb9 locus was delimited into a 648 kb region on chromosome 1 covering thirteen open reading frames (ORFs). Among them, a point mutation (G to A) in exon 2 of the gene Zm00001d029151, named Zmzb9, was identified based on sequencing analysis. The causal gene Zmzb9 encodes UDP-glucose-4-epimerase 4 (UGE4), a key enzyme involved in chloroplast development and was considered as the only candidate gene controlling the mutant phenotype. Expression patterns indicated that the causal gene was abundantly expressed in the leaves and sheaths, as well as significantly downregulated in the mutant compared to that in the wild type. Subcellular localization showed that ZmZB9 was localized in chloroplasts and implied the putative gene involved in chloroplast development. Taken together, we propose that the causal gene Zmzb9 tightly associated with the zebra leaf phenotype, and the obtained gene here will help to uncover the regulatory mechanism of pigment biosynthesis and chloroplast development in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01202-7.

SELECTION OF CITATIONS
SEARCH DETAIL
...