Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2439, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117180

ABSTRACT

Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , p300-CBP Transcription Factors/metabolism , Snail Family Transcription Factors/metabolism , Transcription Factors/metabolism
2.
Nat Cell Biol ; 22(2): 175-186, 2020 02.
Article in English | MEDLINE | ID: mdl-31932739

ABSTRACT

Mouse embryonic stem cells (ESCs) sporadically transit into an early embryonic-like state characterized by the expression of 2-cell (2C) stage-restricted transcripts. Here, we identify a maternal factor-negative elongation factor A (NELFA)-whose heterogeneous expression in mouse ESCs is coupled to 2C gene upregulation and expanded developmental potential in vivo. We show that NELFA partners with Top2a in an interaction specific to the 2C-like state, and that it drives the expression of Dux-a key 2C regulator. Accordingly, loss of NELFA and/or Top2a suppressed Dux activation. Further characterization of 2C-like cells uncovered reduced glycolytic activity; remarkably, mere chemical suppression of glycolysis was sufficient to promote a 2C-like fate, obviating the need for genetic manipulation. Global chromatin state analysis on NELFA-induced cells revealed decommissioning of ESC-specific enhancers, suggesting ESC-state impediments to 2C reversion. Our study positions NELFA as one of the earliest drivers of the 2C-like state and illuminates factors and processes that govern this transition.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Transcription Factors/genetics , Animals , Cell Differentiation , Chromatin/chemistry , Chromatin/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Embryo, Mammalian , Female , Glycolysis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Inheritance Patterns , Male , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/cytology , Multigene Family , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , Transcription Factors/metabolism
3.
Nat Commun ; 7: 12070, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329342

ABSTRACT

Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins.


Subject(s)
Moloney murine leukemia virus/metabolism , Peptide Chain Termination, Translational , Peptide Termination Factors/metabolism , RNA-Directed DNA Polymerase/metabolism , Animals , Calorimetry , Codon, Terminator , Fusion Proteins, gag-pol/metabolism , HEK293 Cells , HIV Reverse Transcriptase/metabolism , HeLa Cells , Humans , Mice , Mutation , Nonsense Mediated mRNA Decay , Protein Binding , Protein Domains , RNA, Messenger/metabolism , Ribonuclease H/chemistry , Ribonuclease H/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...