Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(11): e11644, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36439710

ABSTRACT

The genome-wide DNA methylation assay was used to analyze the difference in methylation between the breeding and conservation populations of Shaoxing ducks. The methylation level of the breeding population was higher than that of the two conservation populations, and the proportion of CG methylation sites was the largest in the three populations, most of the methylation sites were located in the exon region. There were 1247 different methylation regions in the two populations (group A and B), and 927 different methylation regions in the two groups (group A and group C). The differential methylation regions of the three groups were evenly distributed in the gene and intergene regions. GO and KEGG enrichment analysis showed that the differentially expressed genes in the A and B groups were mainly involved in synaptic and cell connections and the signaling pathways were significantly enriched in cAMP and oxytocin signaling pathways. The results showed that the group C was significantly enriched in eight signaling pathways, including the cAMP signaling pathway and long-term enhancement, compared to the group A. There were thirty-five differentially methylated genes, including CACNA1C, GRIA1, GRIA2, GABBR2, PDE10A, BRAF, GRM5, CPEB3, FMn2, GABRB2, PTK2, and CNTN1. These genes were involved in the development and ovulation of ovaries and follicles and were closely related to the excellent production performance of the breeding population. In addition, ATP2B1, ATP2B2, and other genes related to eggshell quality were identified, which can be used as molecular markers to improve eggshell quality in the future.

2.
Poult Sci ; 101(3): 101641, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007929

ABSTRACT

The abuse of antibiotics for agricultural purposes has been under scrutiny. Therefore, there is an urgent need to find antibiotic substitutes in animal production. The effects of chlorogenic acid, ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG on spleen antioxidant capacity, apoptosis, and the immune response in Shaoxing ducklings were investigated in this study. The ducklings treated with ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG showed significant reduction in catalase and superoxide dismutase activities. The five immunopotentiators facilitated caspase 3 expression and reduced Bcl2 expression in the spleen. Compared to the control group, the protein level of COX2 was significantly upregulated in the chlorogenic acid, CpG-DNA, and chicken IgG groups. The protein level of iNOS expression was significantly improved in all immunopotentiator groups, except for the astragalus flavone group. The five immunopotentiators induced IL-1ß, IFN-α, IFN-ß, TNF-α, RIG-I, TLR3, and TLR7 gene expression. In summary, chlorogenic acid, ß-D-Glucan, astragalus flavone, CpG-DNA, and chicken IgG, as immunopotentiators, improved the innate immune response in the ducklings, which not only provides a new avenue for the development of efficient approaches to prevent pathogen infections, but also offers an alternative to antibiotics in animal production.


Subject(s)
Adjuvants, Immunologic , Antioxidants , Adjuvants, Immunologic/pharmacology , Animals , Antioxidants/metabolism , Apoptosis , Chickens/metabolism , Ducks/metabolism , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL
...