Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399445

ABSTRACT

The anti-oral cancer effects of santamarine (SAMA), a Michelia compressa var. compressa-derived natural product, remain unclear. This study investigates the anticancer effects and acting mechanism of SAMA against oral cancer (OC-2 and HSC-3) in parallel with normal (Smulow-Glickman; S-G) cells. SAMA selectively inhibits oral cancer cell viability more than normal cells, reverted by the oxidative stress remover N-acetylcysteine (NAC). The evidence of oxidative stress generation, such as the induction of reactive oxygen species (ROS) and mitochondrial superoxide and the depletion of mitochondrial membrane potential and glutathione, further supports this ROS-dependent selective antiproliferation. SAMA arrests oral cancer cells at the G2/M phase. SAMA triggers apoptosis (annexin V) in oral cancer cells and activates caspases 3, 8, and 9. SAMA enhances two types of DNA damage in oral cancer cells, such as γH2AX and 8-hydroxy-2-deoxyguanosine. Moreover, all of these anticancer mechanisms of SAMA are more highly expressed in oral cancer cells than in normal cells in concentration and time course experiments. These above changes are attenuated by NAC, suggesting that SAMA exerts mechanisms of selective antiproliferation that depend on oxidative stress while maintaining minimal cytotoxicity to normal cells.

2.
Planta Med ; 89(11): 1063-1073, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36977489

ABSTRACT

Dried Iris rhizomes have been used in Chinese and European traditional medicine for the treatment of various diseases such as bacterial infections, cancer, and inflammation, as well as for being astringent, laxative, and diuretic agents. Eighteen phenolic compounds including some rare secondary metabolites, such as irisolidone, kikkalidone, irigenin, irisolone, germanaism B, kaempferol, and xanthone mangiferin, were isolated for the first time from Iris aphylla rhizomes. The hydroethanolic Iris aphylla extract and some of its isolated constituents showed protective effects against influenza H1N1 and enterovirus D68 and anti-inflammatory activity in human neutrophils. The promising anti-influenza effect of apigenin (13: , almost 100% inhibition at 50 µM), kaempferol (14: , 92%), and quercetin (15: , 48%) were further confirmed by neuraminidase inhibitory assay. Irisolidone (1: , almost 100% inhibition at 50 µM), kikkalidone (5: , 93%), and kaempferol (14: , 83%) showed promising anti-enterovirus D68 activity in vitro. The identified compounds were plotted using ChemGPS-NP to correlate the observed activity of the isolated phenolic compounds with the in-house database of anti-influenza and anti-enterovirus agents. Our results indicated that the hydroethanolic Iris aphylla extract and Iris phenolics hold the potential to be developed for the management of seasonal pandemics of influenza and enterovirus infections.


Subject(s)
Flavones , Influenza A Virus, H1N1 Subtype , Iris Plant , Humans , Kaempferols , Plant Extracts/pharmacology , Rhizome/chemistry , Antiviral Agents/pharmacology , Structure-Activity Relationship , Phenols/analysis , Anti-Inflammatory Agents/pharmacology
3.
Environ Toxicol ; 38(2): 332-342, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394428

ABSTRACT

Plasticizers/phthalates play a facilitating role in the development of cancer and help the tumor to grow and metastasize. Camptothecin (CPT) and its derivatives are known to have anticancer properties of inhibiting cell growth, promoting cell apoptosis, and increasing autophagy. Therefore, in this study, we investigated whether the presence of di(2-ethylhexyl) phthalate (DEHP) could hinder apoptosis and autophagy caused by CPT in non-small cell lung cancer (NSCLC) cells. We found that DEHP interferes with CPT-induced apoptosis and autophagy and increases the prosurvival pathway by reducing the DNA damage marker γ-H2AX and activating the Akt and NF-κB pathways. Furthermore, we also confirmed that combining DEHP with 3-MA has additive effects in inhibiting autophagy and apoptosis in NSCLC cells. Taken together, our findings show that DEHP could affect CPT-induced anticancer treatment and provide evidence to show that DEHP induces chemoresistance in CPT-based chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Diethylhexyl Phthalate , Lung Neoplasms , Humans , NF-kappa B/metabolism , Diethylhexyl Phthalate/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Plasticizers/toxicity , Camptothecin/toxicity
4.
Cell Mol Life Sci ; 79(8): 397, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790616

ABSTRACT

Change in cell size may bring in profound impact to cell function and survival, hence the integrity of the organs consisting of those cells. Nevertheless, how cell size is regulated remains incompletely understood. We used the fluorescent zebrafish transgenic line Tg-GGH/LR that displays inducible folate deficiency (FD) and hepatomegaly upon FD induction as in vivo model. We found that FD caused hepatocytes enlargement and increased liver stiffness, which could not be prevented by nucleotides supplementations. Both in vitro and in vivo studies indicated that RIPK3/MLKL-dependent necroptotic pathway and Hippo signaling interactively participated in this FD-induced hepatocytic enlargement in a dual chronological and cooperative manner. FD also induced hepatic inflammation, which convenes a dialog of positive feedback loop between necroptotic and Hippo pathways. The increased MMP13 expression in response to FD elevated TNFα level and further aggravated the hepatocyte enlargement. Meanwhile, F-actin was circumferentially re-allocated at the edge under cell membrane in response to FD. Our results substantiate the interplay among intracellular folate status, pathways regulation, inflammatory responses, actin cytoskeleton and cell volume control, which can be best observed with in vivo platform. Our data also support the use of this Tg-GGH/LR transgenic line for the mechanistical and therapeutic research for the pathologic conditions related to cell size alteration.


Subject(s)
Necroptosis , Zebrafish , Animals , Animals, Genetically Modified , Folic Acid/metabolism , Hepatocytes/metabolism , Hepatomegaly/metabolism , Hypertrophy/metabolism , Inflammation/pathology , Zebrafish/genetics
5.
Front Pharmacol ; 12: 674095, 2021.
Article in English | MEDLINE | ID: mdl-34707494

ABSTRACT

Neutrophilic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or psoriasis, exert a huge burden on the global health system due to the lack of safe and effective treatments. Volatile oils from terrestrial plants showed impressive therapeutic effects against disorders of the skin, digestive system, lungs, liver, metabolism, and nervous system. However, their effect on the immune system and neutrophil function is still elusive. Fennel, cumin, marjoram, lavender, caraway, and anise are the common nutraceuticals that are widely used in the Mediterranean diet. The volatile oils of these herbs were screened for various biological activities, including anti-inflammatory, anti-allergic, antimicrobial, and antiviral effects. Several oils showed anti-inflammatory and antimicrobial potential. Fennel (Foeniculum vulgare) and cumin (Cuminum cyminum) fruits' volatile oils significantly suppressed the activation of human neutrophils, including respiratory burst and the degranulation induced by formyl peptide receptor agonists fMLF/CB and MMK1 in the human neutrophils (IC50, 3.8-17.2 µg/ml). The cytotoxic effect and free-radical scavenging effects (ABTS, DPPH) of these oils did not account for the observed effects. Both fennel and cumin volatile oils significantly shortened calcium influx recovery time and inhibited phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK) expression. The gas chromatography-mass spectrometry analysis of these oils revealed the presence of estragole and cuminaldehyde as the major components of fennel and cumin volatile oils, respectively. Our findings suggested that cumin and fennel, common in the Mediterranean diet, hold the potential to be applied for the treatment of neutrophilic inflammatory diseases.

6.
J Agric Food Chem ; 69(40): 11856-11866, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34590863

ABSTRACT

Four active partition layers and ten isolates, including (5R)- and (5S)-macapyrrolidone A (1a, 1b), and four new alkaloids, (5R)- and (5S)-macapyrrolidone B (2a, 2b) and macapyrrolins D, E (3, 4), were isolated from maca (Lepidium meyenii Walp.), an indigenous food plant from Peru. Derived from the n-hexane layer, the macamide-rich fraction exhibited pro-angiogenic activity on EPC and HUVEC cells. Anti-thrombotic activity was displayed by the polar part of maca extracts (n-butanol and water layers). Both 75% methanol aq. (midlower polar part) and n-hexane (low polar part) layers, which showed signs of fatty acid content, markedly inhibited superoxide and elastase release in an anti-inflammatory assay. The 75% methanol aq. layer showed strong anti-allergic activity, and macapyrrolin A (5) was found active based on ß-hexosaminidase release inhibition assays and a ChemGPS-NP experiment. These valuable bioactivity results suggest that maca is a food plant with good benefits for human health.


Subject(s)
Alkaloids , Anti-Allergic Agents , Lepidium , Anti-Inflammatory Agents/pharmacology , Humans , Plant Extracts/pharmacology
7.
BMC Complement Med Ther ; 21(1): 203, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34289850

ABSTRACT

BACKGROUND: Saffron or stigmas of Crocus sativus L. is one of the most valuable food products with interesting health-promoting properties. C. sativus has been widely used as a coloring and flavoring agent. Stigmas secondary metabolites showed potent cytotoxic effects in previous reports. METHODS: The present study investigated the chemical composition and the cytotoxic effect of Ukrainian saffron crude extracts and individual compounds against melanoma IGR39, triple-negative breast cancer MDA-MB-231, and glioblastoma U-87 cell lines in vitro using MTT assay. Several bioactivity in vitro assays were performed. The chemical profile of the water and hydroethanolic (70%, v/v) crude extracts of saffron stigmas was elucidated by HPLC-DAD analysis. RESULTS: Seven compounds were identified including crocin, picrocrocin, safranal, rutin, apigenin, caffeic acid, ferulic acid. Crocin, picrocrocin, safranal, rutin, and apigenin were the major active constituents of Ukrainian C. sativus stigmas. The hydroethanolic extract significantly reduced the viability of MDA-MB-231 and IGR39 cells and the effect was more potent in comparison with the water extract. However, the water extract was almost 5.6 times more active against the U-87 cell line (EC50 of the water extract against U-87 was 0.15 ± 0.02 mg/mL, and EC50 of the hydroethanolic extract was 0.83 ± 0.03 mg/mL). The pure compounds, apigenin, and caffeic acid also showed high cytotoxic activity against breast cancer, melanoma, and glioblastoma cell lines. The screening of the biological activities of stigmas water extract (up to 100 µg/mL) including anti-allergic, anti-virus, anti-neuraminidase, and anti-inflammatory effects revealed its inhibitory activity against neuraminidase enzyme by 41%. CONCLUSIONS: The presented results revealed the qualitative and quantitative chemical composition and biological activity of Crocus sativus stigmas from Ukraine as a source of natural anticancer and neuraminidase inhibitory agents. The results of the extracts' bioactivity suggested future potential applications of saffron as a natural remedy against several cancers.


Subject(s)
Crocus/chemistry , Crocus/toxicity , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Breast Neoplasms/drug therapy , Cell Line/drug effects , Chromatography, High Pressure Liquid , Crocus/metabolism , Female , Glioblastoma/drug therapy , Humans , In Vitro Techniques , Melanoma/drug therapy , Tetrazolium Salts
8.
Front Cell Dev Biol ; 9: 702969, 2021.
Article in English | MEDLINE | ID: mdl-34268314

ABSTRACT

OBJECTIVE: Congenital eye diseases are multi-factorial and usually cannot be cured. Therefore, proper preventive strategy and understanding the pathomechanism underlying these diseases become important. Deficiency in folate, a water-soluble vitamin B, has been associated with microphthalmia, a congenital eye disease characterized by abnormally small and malformed eyes. However, the causal-link and the underlying mechanism between folate and microphthalmia remain incompletely understood. METHODS: We examined the eye size, optomotor response, intracellular folate distribution, and the expression of folate-requiring enzymes in zebrafish larvae displaying folate deficiency (FD) and ocular defects. RESULTS: FD caused microphthalmia and impeded visual ability in zebrafish larvae, which were rescued by folate and dNTP supplementation. Cell cycle analysis revealed cell accumulation at S-phase and sub-G1 phase. Decreased cell proliferation and increased apoptosis were found in FD larvae during embryogenesis in a developmental timing-specific manner. Lowered methylenetetrahydrofolate reductase (mthfr) expression and up-regulated methylenetetrahydrofolate dehydrogenase (NADP+-dependent)-1-like (mthfd1L) expression were found in FD larvae. Knocking-down mthfd1L expression worsened FD-induced ocular anomalies; whereas increasing mthfd1L expression provided a protective effect. 5-CH3-THF is the most sensitive folate pool, whose levels were the most significantly reduced in response to FD; whereas 10-CHO-THF levels were less affected. 5-CHO-THF is the most effective folate adduct for rescuing FD-induced microphthalmia and defective visual ability. CONCLUSION: FD impeded nucleotides formation, impaired cell proliferation and differentiation, caused apoptosis and interfered active vitamin A production, contributing to ocular defects. The developmental timing-specific and incoherent fluctuation among folate adducts and increased expression of mthfd1L in response to FD reflect the context-dependent regulation of folate-mediated one-carbon metabolism, endowing the larvae to prioritize the essential biochemical pathways for supporting the continuous growth in response to folate depletion.

9.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199488

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
10.
Plants (Basel) ; 10(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073129

ABSTRACT

This study aims to comprehensively explore the phytoconstituents as well as investigate the different biological activities of Chasmanthe aethiopica (Iridaceae) for the first time. Metabolic profiling of the leaf methanol extract of C. aethiopica (CAL) was carried out using HPLC-PDA-ESI-MS/MS. Twenty-nine compounds were annotated belonging to various phytochemical classes including organic acids, cinnamic acid derivatives, flavonoids, isoflavonoids, and fatty acids. Myricetin-3-O-rhamnoside was the major compound identified. GLC/MS analysis of the n-hexane fraction (CAL-A) resulted in the identification of 45 compounds with palmitic acid (16.08%) and methyl hexadecanoic acid ester (11.91%) representing the major constituents. CAL-A exhibited a potent anti-allergic activity as evidenced by its potent inhibition of ß-hexosaminidase release triggered by A23187 and IgE by 72.7% and 48.7%, respectively. Results were comparable to that of dexamethasone (10 nM) in the A23187 degranulation assay showing 80.7% inhibition for ß-hexosaminidase release. Both the n-hexane (CAL-A) and dichloromethane (CAL-B) fractions exhibited potent anti-inflammatory activity manifested by the significant inhibition of superoxide anion generation and prohibition of elastase release. CAL showed anti-hyperglycemic activity in vivo using streptozotocin-induced diabetic rat model by reducing fasting blood glucose levels (FBG) by 53.44% as compared with STZ-treated rats along with a substantial increase in serum insulin by 22.22%. Molecular modeling studies indicated that dicaffeoylquinic acid showed the highest fitting with free binding energies (∆G) of -47.24 and -60.50 Kcal/mol for human α-amylase and α-glucosidase, respectively confirming its anti-hyperglycemic activity. Thus, C. aethiopica leaf extract could serve as an effective antioxidant natural remedy combating inflammation, allergy, and hyperglycemia.

11.
Molecules ; 26(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807380

ABSTRACT

Preparation and characterization of microemulsions consisting of a plant-derived alkyl polyglycoside (APG) surfactant and the essential oil of Melaleuca alternifolia (tea tree) was studied. This nonionic APG surfactant used was Triton CG-110 with a CMC at 1748 ppm at 25 °C. Tea tree oil (TTO) was extracted from tea tree leaves by Triton CG-110-assisted hydrodistillation method. The preparation of the microemulsion was aided by the construction of pseudo-ternary phase diagrams, which were investigated at the different weight ratios of surfactant mixtures (Smix = Triton CG-110/PPG) as 0.6:1, 1.8:1, 1:0 with hydrodistilled and commercial TTO by water titration method at room temperature. Particularly, structure of microemulsion was identified by electrical conductivity and viscosity. Moreover, shelf stability of some microemulsion made of 1% TTO with various concentration of Triton CG-110/PPG (1.8:1 w/w) were monitored for over a two-month period with dynamic light scattering. These results showed that microemulsion made of 1% TTO, 9% Triton CG-110/PPG (1.8:1 w/w) was insensitive with time and temperature of storage.


Subject(s)
Emulsions/chemistry , Melaleuca/chemistry , Surface-Active Agents/chemistry , Tea Tree Oil/chemistry , Chemistry, Pharmaceutical , Solubility , Viscosity
12.
Molecules ; 27(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35011243

ABSTRACT

Crocus sativus L. (saffron) has been traditionally used as a food coloring or flavoring agent, but recent research has shown its potent pharmacological activity to tackle several health-related conditions. Crocus sp. leaves, and petals are the by-products of saffron production and are not usually used in the medicine or food industries. The present study was designed to determine the chemical composition of the water and ethanolic extracts of C. sativus leaves and test their cytotoxic activity against melanoma (IGR39) and triple-negative breast cancer (MDA-MB-231) cell lines by MTT assay. We also determined their anti-allergic, anti-inflammatory, and anti-viral activities. HPLC fingerprint analysis showed the presence of 16 compounds, including hydroxycinnamic acids, xanthones, flavonoids, and isoflavonoids, which could contribute to the extracts' biological activities. For the first time, compounds such as tectoridin, iristectorigenin B, nigricin, and irigenin were identified in Crocus leaf extracts. The results showed that mangiferin (up to 2 mg/g dry weight) and isoorientin (8.5 mg/g dry weight) were the major active ingredients in the leaf extracts. The ethanolic extract reduced the viability of IGR39 and MDA-MB-231 cancer cells with EC50 = 410 ± 100 and 330 ± 40 µg/mL, respectively. It was more active than the aqueous extract. Kaempferol and quercetin were identified as the most active compounds. Our results showed that Crocus leaves contain secondary metabolites with potent cytotoxic and antioxidant activities.


Subject(s)
Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Crocus/chemistry , Melanoma/drug therapy , Plant Extracts/chemistry , Plant Leaves/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Coumaric Acids/chemistry , Flavonoids/chemistry , Free Radical Scavengers/chemistry , Humans , Kaempferols/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Quercetin/chemistry , Xanthones/chemistry
13.
Biochem Pharmacol ; 182: 114294, 2020 12.
Article in English | MEDLINE | ID: mdl-33080184

ABSTRACT

Epilepsy is a common neurological disorder affecting people of all ages, races and ethnic backgrounds world-wide. Vitamin B6 supplementation has been widely used as an adjuvant for treating epilepsy. However, the adverse effects, including nausea and peripheral sensory neuropathy, caused by long-term and high-dose consumption of vitamin B6 have undermined the usefulness of vitamin B6 supplementation, justifying additional experimental scrutiny of vitamin B6-associated toxicity. In the current study, we found that the presence of pyridoxine, the inactive form of B6 vitamer included in most nutrient supplements, increased the mortality of the larvae displaying chemical-induced epilepsy. The expression of leptin-b, one zebrafish ortholog of human leptin, was significantly increased in the larvae displaying seizures. Increased leptin-b expression alleviated larval seizure-like behavior when exposed to epilepsy inducer, but also increased larval mortality in the presence of pyridoxine. Meanwhile, elevated adam17 and mmp13 mRNA level were found in the larvae simultaneously exposed to epilepsy-inducer and pyridoxine. Adding TNF-α inhibitor and mmp13 inhibitor effectively improved the survival of larvae injected with leptin-b mRNA and exposed to pyridoxine subsequently. We conclude that increased leptin-b and metalloprotease expression contributed, at least partly, to the pyridoxine-associated toxicity observed in larvae displaying seizures.


Subject(s)
Larva/metabolism , Metalloproteases/biosynthesis , Pyridoxine/toxicity , Receptors, Leptin/biosynthesis , Seizures/chemically induced , Seizures/metabolism , Animals , Animals, Genetically Modified , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Larva/drug effects , Larva/genetics , Metalloproteases/genetics , Receptors, Leptin/genetics , Seizures/genetics , Vitamin B Complex/toxicity , Zebrafish
14.
Molecules ; 25(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050063

ABSTRACT

The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-ß-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Iris Plant/chemistry , Plant Extracts/pharmacology , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
15.
Phytochemistry ; 177: 112429, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559488

ABSTRACT

Ellagitannins have a marked antioxidant effect and can prevent liver injury induced by free radicals. An undescribed ellagitannin named styphelioidin was isolated from Melaleuca styphelioides Sm. The structure of styphelioidin was elucidated by using various spectroscopic methods. The hepatoprotective activity of styphelioidin (25, 50, and 100 µM) was tested using the CCl4-challenged HepG2 cell model by measuring alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in HepG2 cells treated with styphelioidin for 1 h followed by 40 mM CCl4. Glutathione (GSH), superoxide dismutase activity (SOD) and lipid peroxidation (MDA) were evaluated to determine the mechanisms of the hepatoprotective activity. Styphelioidin significantly reduced the levels of ALT, AST, and MDA at all tested concentrations. Moreover, it conferred a marked increase in the GSH levels and the SOD activity compared to the CCl4-treated groups. Styphelioidin also exerted DPPH· radical-scavenging effects with an IC50 value of 3.67 µM. Results indicated the hepatoprotective therapeutic potential of styphelioidin comparable to silymarin. Moreover, anti-inflammatory activity was assessed and styphelioidin inhibited fMLF/CB-induced elastase release in human neutrophils with IC50 2.51 µM. Cell-free experiments with human neutrophil elastase indicated a direct enzymatic inhibitory effect of styphelioidin on the enzyme activity (IC50 2.58 µM). The potential of styphelioidin to interact with human neutrophil elastase binding sites was further confirmed by molecular docking of styphelioidin into human neutrophil elastase crystal structure using AutoDock 4.2. Styphelioidin represents a potent hepatoprotective and antioxidant agent with effects on ALT, AST, MDA, GSH, and SOD comparable to silymarin. The beneficial anti-elastase properties hold the potential for drug development against elastase-related inflammatory diseases. This study highlights a promising natural hepatoprotective and anti-inflammatory candidate derived from M. styphelioides.


Subject(s)
Chemical and Drug Induced Liver Injury , Melaleuca , Anti-Inflammatory Agents , Antioxidants , Carbon Tetrachloride , Humans , Hydrolyzable Tannins , Liver , Molecular Docking Simulation , Plant Extracts
16.
RSC Adv ; 10(62): 38128-38141, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-35515148

ABSTRACT

On Wednesday 11th March, 2020, the world health organization (WHO) announced novel coronavirus (COVID-19, also called SARS-CoV-2) as a pandemic. Due to time shortage and lack of either a vaccine and/or an effective treatment, many trials focused on testing natural products to find out potential lead candidates. In this field, an edible and folk medicinal Jordanian plant Crepis sancta (Asteraceae) was selected for this study. Phytochemical investigation of its enriched polyphenolic extract afforded four eudesmane sesquiterpenes (1-4) together with (6S,9R)-roseoside (5) and five different methylated flavonols (6-10). Structure elucidation of isolated compounds was unambiguously determined based on HRESIMS, X-ray crystallography, and exhaustive 1D and 2D NMR experiments. All isolated compounds were assessed for their in vitro anti-inflammatory, antiallergic and in silico COVID-19 main protease (Mpro) inhibitory activities. Among the tested compounds, compounds 5-10 revealed potent anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities. Chrysosplenetin (10) is considered as a promising anti-inflammatory and antiallergic lead structure adding to the phytotherapeutic pipeline. Moreover, its inhibitory activity against SARS-CoV-2 Mpro, supported by docking and molecular dynamic studies, strengthens its potential as a lead structure paving the way toward finding out a natural remedy to treat and/or to control the current COVID-19 pandemic.

17.
Sci Rep ; 9(1): 12633, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477754

ABSTRACT

Lung injury is one of the pathological hallmarks of most respiratory tract diseases including asthma, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). It involves progressive pulmonary tissue damages which are usually irreversible and incurable. Therefore, strategies to facilitate drug development against lung injury are needed. Here, we characterized the zebrafish folate-deficiency (FD) transgenic line that lacks a fully-developed swim bladder. Whole-mount in-situ hybridization revealed comparable distribution patterns of swim bladder tissue markers between wild-type and FD larvae, suggesting a proper development of swim bladder in early embryonic stages. Unexpectedly, neutrophils infiltration was not observed in the defective swim bladder. Microarray analysis revealed a significant increase and decrease of the transcripts for cathepsin L and a cystatin B (CSTB)-like (zCSTB-like) proteins, respectively, in FD larvae. The distribution of cathepsin L and the zCSTB-like transcripts was spatio-temporally specific in developing wild-type embryos and, in appropriate measure, correlated with their potential roles in maintaining swim bladder integrity. Supplementing with 5-formyltetrahydrofolate successfully prevented the swim bladder anomaly and the imbalanced expression of cathepsin L and the zCSTB-like protein induced by folate deficiency. Injecting the purified recombinant zebrafish zCSTB-like protein alleviated FD-induced swim bladder anomaly. We concluded that the imbalanced expression of cathepsin L and the zCSTB-like protein contributed to the swim bladder malformation induced by FD and suggested the potential application of this transgenic line to model the lung injury and ECM remodeling associated with protease/protease inhibitor imbalance.


Subject(s)
Air Sacs/pathology , Cathepsin L/metabolism , Cystatin B/metabolism , Endopeptidases/metabolism , Folic Acid Deficiency/complications , Lung Injury/etiology , Protease Inhibitors/metabolism , Zebrafish/physiology , Air Sacs/metabolism , Amino Acid Sequence , Animals , Biomarkers/metabolism , Cathepsin L/genetics , Cystatin B/chemistry , Cystatin B/genetics , Disease Models, Animal , Embryo, Nonmammalian/pathology , Embryonic Development , Larva/metabolism , Lung Injury/metabolism , Lung Injury/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Zebrafish/embryology , Zebrafish Proteins/metabolism
18.
Front Neurosci ; 13: 769, 2019.
Article in English | MEDLINE | ID: mdl-31440123

ABSTRACT

Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases, and neuroinflammation has been identified as one of its key pathological characteristics. Triggering receptors expressed on myeloid cells-1 (TREM-1) amplify the inflammatory response and play a role in sepsis and cancer. Recent studies have demonstrated that the attenuation of TREM-1 activity produces cytoprotective and anti-inflammatory effects in macrophages. However, no study has examined the role of TREM-1 in neurodegeneration. We showed that LP17, a synthetic peptide blocker of TREM-1, significantly inhibited the lipopolysaccharide (LPS)-induced upregulation of proinflammatory cascades of inducible nitric oxide synthase (iNOS), cyclooxygenase-2, and nuclear factor-kappa B. Moreover, LP17 enhanced the LPS-induced upregulation of autophagy-related proteins such as light chain-3 and histone deacetylase-6. We also knocked down TREM-1 expression in a BV2 cell model to further confirm the role of TREM-1. LP17 inhibited 6-hydroxydopamine-induced locomotor deficit and iNOS messenger RNA expression in zebrafish. We also observed therapeutic effects of LP17 administration in 6-hydroxydopamine-induced PD syndrome using a rat model. These data suggest that the attenuation of TREM-1 could ameliorate neuroinflammatory responses in PD and that this neuroprotective effect might occur via the activation of autophagy and anti-inflammatory pathways.

19.
J Biomed Sci ; 26(1): 60, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31451113

ABSTRACT

BACKGROUND: Thrombomodulin (TM), an integral membrane protein, has long been known for its anticoagulant activity. Recent studies showed that TM displays multifaceted activities, including the involvement in cell adhesion and collective cell migration in vitro. However, whether TM contributes similarly to these biological processes in vivo remains elusive. METHODS: We adapted zebrafish, a prominent animal model for studying molecular/cellular activity, embryonic development, diseases mechanism and drug discovery, to examine how TM functions in modulating cell migration during germ layer formation, a normal and crucial physiological process involving massive cell movement in the very early stages of life. In addition, an in vivo assay was developed to examine the anti-hemostatic activity of TM in zebrafish larva. RESULTS: We found that zebrafish TM-b, a zebrafish TM-like protein, was expressed mainly in vasculatures and displayed anti-hemostatic activity. Knocking-down TM-b led to malformation of multiple organs, including vessels, heart, blood cells and neural tissues. Delayed epiboly and incoherent movement of yolk syncytial layer were also observed in early TM-b morphants. Whole mount immunostaining revealed the co-localization of TM-b with both actin and microtubules in epibolic blastomeres. Single-cell tracking revealed impeded migration of blastomeres during epiboly in TM-b-deficient embryos. CONCLUSION: Our results showed that TM-b is crucial to the collective migration of blastomeres during germ layer formation. The structural and functional compatibility and conservation between zebrafish TM-b and mammalian TM support the properness of using zebrafish as an in vivo platform for studying the biological significance and medical use of TM.


Subject(s)
Germ Layers/embryology , Morphogenesis , Organogenesis , Thrombomodulin/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Animals , Blastomeres/metabolism , Embryo, Nonmammalian/embryology , Thrombomodulin/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
20.
Ecotoxicol Environ Saf ; 182: 109380, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31279279

ABSTRACT

Ultraviolet (UV) is an omnipresent environmental carcinogen transmitted by sunlight. Excessive UV irradiation has been correlated to an increased risk of skin cancers. UVB, the most mutagenic component among the three UV constituents, causes damage mainly through inducing DNA damage and oxidative stress. Therefore, strategies or nutrients that strengthen an individual's resistance to UV-inflicted harmful effects shall be beneficial. Folate is a water-soluble B vitamin essential for nucleotides biosynthesis, and also a strong biological antioxidant, hence a micronutrient with potential of modulating individual's vulnerability to UV exposure. In this study, we investigated the impact of folate status on UV sensitivity and the protective activity of folate supplementation using a zebrafish model. Elevated reactive oxygen species (ROS) level and morphological injury were observed in the larvae exposed to UVB, which were readily rescued by supplementing with folic acid, 5-formyltetrahydrofolate (5-CHO-THF) and N-acetyl-L-cysteine (NAC). The UVB-inflicted abnormalities and mortality were worsened in Tg(hsp:EGFP-γGH) larvae displaying folate deficiency. Intriguingly, only supplementation with 5-CHO-THF, as opposed to folic acid, offered significant and consistent protection against UVB-inflicted oxidative damage in the folate-deficient larvae. We concluded that the intrinsic folate status correlates with the vulnerability to UVB-induced damage in zebrafish larvae. In addition, 5-CHO-THF surpassed both folic acid and NAC in preventing UVB-inflicted oxidative stress and injury in our current experimental zebrafish model.


Subject(s)
Folic Acid Deficiency/prevention & control , Leucovorin/pharmacology , Oxidative Stress/drug effects , Ultraviolet Rays/adverse effects , Vitamin B Complex/pharmacology , Zebrafish/metabolism , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Dietary Supplements , Folic Acid Deficiency/metabolism , Larva/drug effects , Larva/metabolism , Oxidative Stress/radiation effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...