Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Control Release ; 369: 179-198, 2024 May.
Article in English | MEDLINE | ID: mdl-38368947

ABSTRACT

Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.


Subject(s)
Camptothecin , Glucuronidase , Irinotecan , Mice, Transgenic , Prodrugs , Animals , Prodrugs/administration & dosage , Humans , Irinotecan/administration & dosage , Irinotecan/pharmacokinetics , Glucuronidase/genetics , Glucuronidase/metabolism , Camptothecin/analogs & derivatives , Camptothecin/pharmacokinetics , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Protein Engineering , Mice , Cell Line, Tumor , Female , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/therapeutic use , Neoplasms/drug therapy , Neoplasms/immunology , Xenograft Model Antitumor Assays , Enzyme Stability , Mice, Nude
2.
ACS Nano ; 17(6): 5757-5772, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36926834

ABSTRACT

Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.


Subject(s)
Hypothermia , Polyethylene Glycols , Mice , Humans , Animals , Polyethylene Glycols/chemistry , Nanomedicine , Histamine , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Immunoglobulin G , Immunity, Innate , Liposomes/pharmacology
3.
J Control Release ; 354: 354-367, 2023 02.
Article in English | MEDLINE | ID: mdl-36641121

ABSTRACT

Methoxy polyethylene glycol (mPEG) is attached to many proteins, peptides, nucleic acids and nanomedicines to improve their biocompatibility. Antibodies that bind PEG are present in many individuals and can be generated upon administration of pegylated therapeutics. Anti-PEG antibodies that bind to the PEG "backbone" can accelerate drug clearance and detrimentally affect drug activity and safety, but no studies have examined how anti-methoxy PEG (mPEG) antibodies, which selectively bind the terminus of mPEG, affect pegylated drugs. Here, we investigated how defined IgG and IgM monoclonal antibodies specific to the PEG backbone (anti-PEG) or terminal methoxy group (anti-mPEG) affect pegylated liposomes or proteins with a single PEG chain, a single branched PEG chain, or multiple PEG chains. Large immune complexes can be formed between all pegylated compounds and anti-PEG antibodies but only pegylated liposomes formed large immune complexes with anti-mPEG antibodies. Both anti-PEG IgG and IgM antibodies accelerated the clearance of all pegylated compounds but anti-mPEG antibodies did not accelerate clearance of proteins with a single or branched PEG molecule. Pegylated liposomes were primarily taken up by Kupffer cells in the liver, but both anti-PEG and anti-mPEG antibodies directed uptake of a heavily pegylated protein to liver sinusoidal endothelial cells. Our results demonstrate that in contrast to anti-PEG antibodies, immune complex formation and drug clearance induced by anti-mPEG antibodies depends on pegylation architecture; compounds with a single or branched PEG molecule are unaffected by anti-mPEG antibodies but are increasingly affected as the number of PEG chain in a structure increases.


Subject(s)
Antigen-Antibody Complex , Liposomes , Humans , Liposomes/chemistry , Endothelial Cells/metabolism , Polyethylene Glycols/chemistry , Antibodies, Monoclonal , Immunoglobulin M , Immunoglobulin G
4.
J Control Release ; 354: 316-322, 2023 02.
Article in English | MEDLINE | ID: mdl-36549393

ABSTRACT

The early and massive vaccination campaign in Israel with the mRNA-LNP Comirnaty® (Pfizer-BioNTech) vaccine against the SARS-CoV-2 virus made available large amounts of data regarding the efficacy and safety of this vaccine. Adverse reactions to mRNA-based SARS-CoV-2 vaccines are rare events, but due to large mediatic coverage they became feared and acted as a potential source of delay for the vaccination of the Israeli population. The experience with the reactogenicity of the polyethylene glycol (PEG) moiety of PEGylated liposomes, PEGylated proteins and other PEGylated drugs raised the fear that similar adverse effects can be associated with the PEG lipid which is an essential component of currently used mRNA-LNP vaccines against COVID-19. In this study we quantified the levels of anti-PEG IgG, IgM and IgE present in the blood of 79 volunteers immediately before and 3 weeks after receiving a first dose of Comirnaty® vaccine. Our in vitro results show that different humanized anti-PEG antibodies bind the PEGylated nano-liposomes in a concentration-dependent manner, but they bind with a lower affinity to the Comirnaty vaccine, despite it having a high mole% of neutral PEG2000-lipid on its surface. We found an increase in IgG concentration in the blood 3 weeks after the first vaccine administration, but no increase in IgM or IgE. In addition, no severe signs of adverse reactions to the Comirnaty vaccine were observed in the population studied despite the significant pre-existing high titers of IgG before the first dose of vaccine in 2 donors.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Liposomes , Polyethylene Glycols , RNA, Messenger , Lipids , Immunoglobulin E , Immunoglobulin G , Immunoglobulin M , Antibodies, Viral
5.
Biomed Pharmacother ; 146: 112502, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891120

ABSTRACT

Antibodies that bind polyethylene glycol (PEG) can be induced by pegylated biomolecules and also exist in a significant fraction of healthy individuals who have never received pegylated medicines. The binding affinity of antibodies against PEG (anti-PEG antibodies) likely varies depending on if they are induced or naturally occurring. Anti-PEG antibodies can accelerate the clearance of pegylated medicines from the circulation, resulting in loss of drug efficacy, but it is unknown how accelerated blood clearance is affected by anti-PEG antibody affinity. We identified a panel of anti-PEG IgG and IgM antibodies with binding avidities ranging over several orders of magnitude to methoxy polyethylene glycol-epoetin beta (PEG-EPO), which is used to treat patients suffering from anemia. Formation of in vitro immune complexes between PEG-EPO and anti-PEG IgG or IgM antibodies was more obvious as antibody affinity increased. Likewise, high affinity anti-PEG antibodies produced greater accelerated blood clearance of PEG-EPO as compared to low affinity antibodies. The molar ratio of anti-PEG antibody to PEG-EPO that accelerates drug clearance in mice correlates with antibody binding avidity. Our study indicates that the bioactivity of PEG-EPO may be reduced due to rapid clearance in patients with either high concentrations of low affinity or low concentrations of high affinity anti-PEG IgG and IgM antibodies.


Subject(s)
Antibody Affinity/immunology , Erythropoietin/immunology , Erythropoietin/pharmacokinetics , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Polyethylene Glycols/pharmacokinetics , Animals , Antigen-Antibody Complex/immunology , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Female , Gene Editing , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/pharmacokinetics
6.
ACS Nano ; 15(9): 14022-14048, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34469112

ABSTRACT

Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.


Subject(s)
COVID-19 , Polyethylene Glycols , Humans , Liposomes , RNA, Viral , SARS-CoV-2
7.
Commun Biol ; 4(1): 280, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664385

ABSTRACT

Irinotecan inhibits cell proliferation and thus is used for the primary treatment of colorectal cancer. Metabolism of irinotecan involves incorporation of ß-glucuronic acid to facilitate excretion. During transit of the glucuronidated product through the gastrointestinal tract, an induced upregulation of gut microbial ß-glucuronidase (GUS) activity may cause severe diarrhea and thus force many patients to stop treatment. We herein report the development of uronic isofagomine (UIFG) derivatives that act as general, potent inhibitors of bacterial GUSs, especially those of Escherichia coli and Clostridium perfringens. The best inhibitor, C6-nonyl UIFG, is 23,300-fold more selective for E. coli GUS than for human GUS (Ki = 0.0045 and 105 µM, respectively). Structural evidence indicated that the loss of coordinated water molecules, with the consequent increase in entropy, contributes to the high affinity and selectivity for bacterial GUSs. The inhibitors also effectively reduced irinotecan-induced diarrhea in mice without damaging intestinal epithelial cells.


Subject(s)
Bacteria/drug effects , Colon/microbiology , Diarrhea/prevention & control , Enzyme Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Glucuronidase/antagonists & inhibitors , Imino Pyranoses/pharmacology , Irinotecan , Uronic Acids/pharmacology , Animals , Bacteria/enzymology , Cell Line , Diarrhea/chemically induced , Diarrhea/microbiology , Disease Models, Animal , Female , Glucuronidase/metabolism , Humans , Mice, Inbred BALB C
8.
J Control Release ; 331: 142-153, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33444669

ABSTRACT

The generation of anti-PEG antibodies in response to PEGylated proteins, peptides, and carriers significantly limits their clinical applicability. IgM antibodies mediate the clearance of these therapeutics upon repeat injection, resulting in toxicity and hindered therapeutic efficacy. We observed this phenomenon in our polymer platform, virus-inspired polymer for endosomal release (VIPER), which employs pH-sensitive triggered display of a lytic peptide, melittin, to facilitate endosomal escape. While the polymer-peptide conjugate was well tolerated after a single injection, we observed unexpected mortality upon repeat injection. Thus, the goal of this work was to enhance the safety and tolerability of VIPER for frequent dosing. Based on previous reports on anti-PEG antibodies and the adjuvant activity of melittin, we characterized the antibody response to polymer, peptide, and polymer-peptide conjugates after repeat-dosing and measured high IgM titers that bound PEG. By substituting the L-amino acid peptide for its D-amino acid enantiomer, we significantly attenuated the anti-PEG antibody generation and toxicity, permitting repeat-injections. We attempted to rescue mice from L-melittin induced toxicity by prophylactic injection of platelet activating factor (PAF) antagonist CV-6209, but observed minimal effect, suggesting that PAF is not the primary mediator of the observed hypersensitivity response. Overall, we demonstrated that the D-amino acid polymer-peptide conjugates, unlike L-amino acid polymer-peptide conjugates, exhibit good tolerability in vivo, even upon repeat administration, and do not elicit the generation of anti-PEG antibodies.


Subject(s)
Polyethylene Glycols , Polymers , Amino Acids , Animals , Immunoglobulin M , Mice , Peptides
9.
ACS Nano ; 14(7): 7808-7822, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32142248

ABSTRACT

Anti-polyethylene glycol (PEG) antibodies are present in many healthy individuals as well as in patients receiving polyethylene glycol-functionalized drugs. Antibodies against PEG-coated nanocarriers can accelerate their clearance, but their impact on nanodrug properties including nanocarrier integrity is unclear. Here, we show that anti-PEG IgG and IgM antibodies bind to PEG molecules on the surface of PEG-coated liposomal doxorubicin (Doxil, Doxisome, LC-101, and Lipo-Dox), resulting in complement activation, formation of the membrane attack complex (C5b-9) in the liposomal membrane, and rapid release of encapsulated doxorubicin from the liposomes. Drug release depended on both classical and alternative pathways of complement activation. Doxorubicin release of up to 40% was also observed in rats treated with anti-PEG IgG and PEG-coated liposomal doxorubicin. Our results demonstrate that anti-PEG antibodies can disrupt the membrane integrity of PEG-coated liposomal doxorubicin through activation of complement, which may alter therapeutic efficacy and safety in patients with high levels of pre-existing antibodies against PEG.


Subject(s)
Complement Membrane Attack Complex , Doxorubicin , Animals , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Drug Liberation , Humans , Liposomes , Polyethylene Glycols , Rats
10.
Molecules ; 25(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012928

ABSTRACT

PEGylated nanomedicines are known to induce infusion reactions (IRs) that in some cases can be life-threatening. Herein, we report a case study in which a patient with rare mediastinal and intracardiac IgG4-related sclerosing disease received 8 treatments of intravenously administered PEGylated liposomal methylprednisolone-succinate (NSSL-MPS). Due to the ethical requirements to reduce IRs, the patient received a cocktail of premedication including low dose of steroids, acetaminophen and H2 blockers before each infusion. The treatment was well-tolerated in that IRs, complement activation, anti-PEG antibodies and accelerated blood clearance of the PEGylated drug were not detected. Prior to the clinical study, an in vitro panel of assays utilizing blood of healthy donors was used to determine the potential of a PEGylated drug to activate complement system, elicit pro-inflammatory cytokines, damage erythrocytes and affect various components of the blood coagulation system. The overall findings of the in vitro panel were negative and correlated with the results observed in the clinical phase.


Subject(s)
Immunologic Factors/administration & dosage , Liposomes , Methylprednisolone Hemisuccinate/administration & dosage , Biomarkers , Complement Activation/drug effects , Complement Activation/immunology , Complement System Proteins/immunology , Disease Susceptibility , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Liposomes/chemistry , Male , Methylprednisolone Hemisuccinate/pharmacokinetics , Polyethylene Glycols/chemistry
11.
Pharmaceutics ; 12(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877813

ABSTRACT

Pre-existing antibodies that bind polyethylene glycol are present in about 40% of healthy individuals. It is currently unknown if pre-existing anti-polyethylene glycol (PEG) antibodies can alter the bioactivity of pegylated drugs with a single long PEG chain, which represents the majority of newly developed pegylated medicines. Methoxy polyethylene glycol-epoetin beta (PEG-EPO) contains a single 30 kDa PEG chain and is used to treat patients suffering from anemia. We find that the pre-existing human anti-PEG IgM and IgG antibodies from normal donors can bind to PEG-EPO. The prevalence and concentrations of anti-PEG IgM and IgG antibodies were also higher in patients that responded poorly to PEG-EPO. Monoclonal anti-PEG IgM and IgG antibodies at concentrations found in normal donors blocked the biological activity of PEG-EPO to stimulate the production of new erythrocytes in mice and accelerated the clearance of 125I-PEG-EPO, resulting in PEG-EPO accumulation primarily in the liver and spleen. Accelerated clearance by the anti-PEG IgG antibody was mediated by the Fc portion of the antibody. Importantly, infusing higher doses of PEG-EPO could compensate for the inhibitory effects of anti-PEG antibodies, suggesting that pre-existing anti-PEG antibodies can be "dosed through." Our study indicates that the bioactivity and therapeutic activity of PEG-EPO may be reduced in patients with elevated levels of pre-existing anti-PEG antibodies. New pegylated medicines with a single long PEG chain may also be affected in patients with high levels of anti-PEG antibodies.

12.
J Control Release ; 306: 138-148, 2019 07 28.
Article in English | MEDLINE | ID: mdl-31176656

ABSTRACT

The increasing use in the last decade of PEGylated nanodrugs such as Doxil® has seen a rise in the number of associated occurrences of hypersensitivity reactions (HSRs). These reactions (also called infusion reactions or IR), can range from harmless symptoms to life-threatening reactions. Current means to prevent IR include the prophylactic use of antihistamines and steroids, but they cannot ensure total prevention. We previously showed that an intravenous injection of doxorubicin-free Doxil-like PEGylated nano-liposomes (Doxebo) prior to Doxil treatment suppresses Doxil-induced complement activation-related pseudoallergy (CARPA) in pigs, a model of human hypersensitivity reactions to Doxil. However, in order to use Doxebo to prevent Doxil-induced IR, we have to prove its safety and that it does not affect Doxil's performance. Here we show that Doxebo itself does not have toxic effects on the host or tumor, and it does not interfere with Doxil's antitumor activity in mice. Blood, microscopic and macroscopic organ evaluation of rats after repeated administration confirm the lack of intrinsic adverse effect of Doxebo. Likewise, the repeated injection of Doxebo before Doxil did not impact Doxil's pharmacokinetics in plasma and therefore does not cause accelerated blood clearance (ABC). Taken together with our previous publications, these data suggest that the injection of Doxebo prior to Doxil administration can help protect against Doxil-induced IR without adversely affecting treatment efficacy and safety.


Subject(s)
Doxorubicin/analogs & derivatives , Drug Hypersensitivity/prevention & control , Liposomes/administration & dosage , Animals , Doxorubicin/adverse effects , Doxorubicin/pharmacokinetics , Female , Humans , Injections, Intravenous , Liposomes/adverse effects , Male , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/mortality , Polyethylene Glycols/adverse effects , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Sprague-Dawley
13.
Theranostics ; 8(11): 3164-3175, 2018.
Article in English | MEDLINE | ID: mdl-29896310

ABSTRACT

Rationale: Increasing frequency of human exposure to PEG-related products means that healthy people are likely to have pre-existing anti-PEG antibodies (pre-αPEG Ab). However, the influence of pre-αPEG Abs on the pharmacokinetics (PK) and therapeutic efficacy of LipoDox is unknown. Methods: We generated two pre-αPEG Ab mouse models. First, naïve mice were immunized with PEGylated protein to generate an endogenous αPEG Ab titer (endo αPEG). Second, monoclonal αPEG Abs were passively transferred (αPEG-PT) into naïve mice to establish a αPEG titer. The naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its PK. Tumor-bearing naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its biodistribution. The therapeutic efficacy of LipoDox was estimated in the tumor-bearing mice. Results: The areas under the curve (AUC)last of LipoDox in endo αPEG and αPEG-PT mice were 11.5- and 15.6- fold less, respectively, than that of the naïve group. The biodistribution results suggested that pre-αPEG Ab can significantly reduce tumor accumulation and accelerate blood clearance of 111In-labeled LipoDox from the spleen. The tumor volumes of the tumor-bearing endo αPEG and αPEG-PT mice after treatment with LipoDox were significantly increased as compared with that of the tumor-bearing naïve mice. Conclusions: Pre-αPEG Abs were found to dramatically alter the PK and reduce the tumor accumulation and therapeutic efficacy of LipoDox. Pre-αPEG may have potential as a marker to aid development of personalized therapy using LipoDox and achieve optimal therapeutic efficacy.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Antibodies/immunology , Doxorubicin/analogs & derivatives , Neoplasms, Experimental/drug therapy , Animals , Antibiotics, Antineoplastic/immunology , Antibiotics, Antineoplastic/pharmacokinetics , Antibodies/blood , Doxorubicin/immunology , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Female , Liposomes/pharmacokinetics , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use
14.
Front Immunol ; 9: 713, 2018.
Article in English | MEDLINE | ID: mdl-29686683

ABSTRACT

How T cell receptors (TCRs) are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.


Subject(s)
Leukocyte Common Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , CD3 Complex/antagonists & inhibitors , Calcium/metabolism , Cell Line, Tumor , Disease Models, Animal , Humans , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lymphocyte Activation/immunology , Phosphorylation , Protein Binding , Single-Chain Antibodies/pharmacology , ZAP-70 Protein-Tyrosine Kinase/metabolism
15.
Nat Commun ; 8(1): 522, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900105

ABSTRACT

Conjugation of polyethylene glycol (PEG) to therapeutic molecules can improve bioavailability and therapeutic efficacy. However, some healthy individuals have pre-existing anti-PEG antibodies and certain patients develop anti-PEG antibody during treatment with PEGylated medicines, suggesting that genetics might play a role in PEG immunogenicity. Here we perform genome-wide association studies for anti-PEG IgM and IgG responses in Han Chinese with 177 and 140 individuals, defined as positive for anti-PEG IgM and IgG responses, respectively, and with 492 subjects without either anti-PEG IgM or IgG as controls. We validate the association results in the replication cohort, consisting of 211 and 192 subjects with anti-PEG IgM and anti-PEG IgG, respectively, and 596 controls. We identify the immunoglobulin heavy chain (IGH) locus to be associated with anti-PEG IgM response at genome-wide significance (P = 2.23 × 10-22). Our findings may provide novel genetic markers for predicting the immunogenicity of PEG and efficacy of PEGylated therapeutics.Some individuals develop antibodies against the polyethylene glycol that is commonly used in therapeutic preparations. Here the authors conduct a GWAS in Han Chinese and find the IGH locus is associated with anti-PEG IgM.


Subject(s)
Drug Hypersensitivity/genetics , Polyethylene Glycols/adverse effects , Adult , Aged , Aged, 80 and over , Asian People/genetics , China , Cohort Studies , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Female , Genome-Wide Association Study , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
16.
Front Immunol ; 8: 793, 2017.
Article in English | MEDLINE | ID: mdl-28740495

ABSTRACT

T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR) triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs) is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11) in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv) did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.

17.
Nat Commun ; 8: 15507, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28593948

ABSTRACT

Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.


Subject(s)
Endocytosis , Nanomedicine , Polyethylene Glycols/chemistry , Triple Negative Breast Neoplasms/pathology , Animals , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cell Proliferation , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Drug Delivery Systems , ErbB Receptors/metabolism , Female , Humans , Mice , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use , Triple Negative Breast Neoplasms/drug therapy
18.
Anal Chem ; 89(11): 6082-6090, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28485140

ABSTRACT

Sensitive quantification of the pharmacokinetics of poly(ethylene glycol) (PEG) and PEGylated molecules is critical for PEGylated drug development. Here, we developed a sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for PEG by tethering an anti-PEG antibody (AGP3) via tethers with different dimensions on the surface of 293T cells (293T/S-αPEG, short-type cells; 293T/L-αPEG, long-type cells; 293T/SL-αPEG, hybrid-type cells) to improve the binding capacity and detection limit for free PEG and PEGylated molecules. The binding capacity of hybrid-type cells for PEG-like molecules (CH3-PEG5K-FITC (FITC = fluorescein isothiocyanate) and eight-arm PEG20K-FITC) was at least 10-80-fold greater than that of 293T cells expressing anti-PEG antibodies with uniform tether lengths. The detection limit of free PEG (OH-PEG3K-NH2 and CH3-PEG5K-NH2) and PEG-like molecule (CH3-PEG5K-FITC, CH3-PEG5K-SHPP, and CH3-PEG5K-NIR797) was14-137 ng mL-1 in the hybrid-type cell-based sandwich ELISA. 293T/SL-αPEG cells also had significantly higher sensitivity for quantification of a PEGylated protein (PegIntron) and multiarm PEG macromolecules (eight-arm PEG20K-NH2 and eight-arm PEG40K-NH2) at 3.2, 16, and 16 ng mL-1, respectively. Additionally, the overall binding capacity of 293T/SL-αPEG cells for PEGylated macromolecules was higher than that of 293T/S-αPEG or 293T/L-αPEG cells. Anchoring anti-PEG antibodies on cells via variable-length tethers for cell-based sandwich ELISA, therefore, provides a sensitive, high-capacity method for quantifying free PEG and PEGylated molecules.


Subject(s)
Antibodies/metabolism , Membranes/metabolism , Polyethylene Glycols/analysis , Cross-Linking Reagents/chemistry , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans
19.
Anal Chem ; 88(21): 10661-10666, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27726379

ABSTRACT

Polyethylene glycol (PEG) is a biocompatible polymer that is often attached to therapeutic molecules to improve bioavailability and therapeutic efficacy. Although antibodies with specificity for PEG may compromise the safety and effectiveness of PEGylated medicines, the prevalence of pre-existing anti-PEG antibodies in healthy individuals is unclear. Chimeric human anti-PEG antibody standards were created to accurately measure anti-PEG IgM and IgG antibodies by direct ELISA with confirmation by a competition assay in the plasma of 1504 healthy Han Chinese donors residing in Taiwan. Anti-PEG antibodies were detected in 44.3% of healthy donors with a high prevalence of both anti-PEG IgM (27.1%) and anti-PEG IgG (25.7%). Anti-PEG IgM and IgG antibodies were significantly more common in females as compared to males (32.0% vs 22.2% for IgM, p < 0.0001 and 28.3% vs 23.0% for IgG, p = 0.018). The prevalence of anti-PEG IgG antibodies was higher in younger (up to 60% for 20 year olds) as opposed to older (20% for >50 years) male and female donors. Anti-PEG IgG concentrations were negatively associated with donor age in both females (p = 0.0073) and males (p = 0.026). Both anti-PEG IgM and IgG strongly bound PEGylated medicines. The described assay can assist in the elucidation of the impact of anti-PEG antibodies on the safety and therapeutic efficacy of PEGylated medicines.


Subject(s)
Immunoglobulin G/blood , Immunoglobulin M/blood , Polyethylene Glycols/metabolism , Adult , Aged , Aged, 80 and over , Animals , Asian People , Doxorubicin/analogs & derivatives , Doxorubicin/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Interferon-alpha/immunology , Male , Mice , Middle Aged , Recombinant Fusion Proteins/immunology , Recombinant Proteins/immunology , Young Adult
20.
Cancer Lett ; 377(2): 126-33, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27130449

ABSTRACT

Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/administration & dosage , Cancer Vaccines/administration & dosage , Epitopes, B-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/administration & dosage , HLA-A2 Antigen/immunology , Melanoma, Experimental/therapy , Skin Neoplasms/therapy , Adjuvants, Immunologic/administration & dosage , Animals , Antibody-Dependent Cell Cytotoxicity , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Female , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Immunization , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/secondary , Mice, Inbred C57BL , Mice, Transgenic , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Time Factors , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , Transfection , Tumor Burden , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...