Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Mol Nutr Food Res ; : e2400123, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809052

ABSTRACT

SCOPE: Liver injury is a major complication associated with sepsis. Together with others, the study has shown that gallic acid (GA) exerts anti-inflammatory and antioxidant effects in vivo. However, the role of GA in sepsis-mediated hepatic impairment and the underlying mechanisms remains to be elucidated. METHODS AND RESULTS: C57BL/6J mice are pretreated with saline or GA and subjected to sham or cecal ligation and puncture (CLP). The pathological alterations are assessed by hematoxylin and eosin staining as well as immunohistochemical staining. RNA sequencing is employed to analyze hepatic transcriptome modifications. The study finds that GA supplementation significantly ameliorates CLP-induced mortality, liver dysfunction, and inflammation. RNA sequencing reveals that 1324 genes are markedly differentially regulated in livers of saline- or GA-treated sham or CLP mice. Gene ontology analysis demonstrates that the differentially expressed genes regulated by GA are predominantly correlated with the immune system process, oxidation-reduction process, and inflammatory response. Furthermore, mitogen-activated protein kinase (MAPK) signaling is localized in the center of the GA-mediated pathway network. Notably, activation of MAPK by C16-PAF significantly blocks GA-mediated protective effects on hepatic injury, inflammation, as well as CCAAT/enhancer-binding protein-ß (C/EBPß) dependent extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling. CONCLUSION: Therefore, this study indicates that GA may offer a promising therapeutic opportunity for sepsis-associated liver injury.

2.
ACS Appl Mater Interfaces ; 16(19): 24840-24850, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700749

ABSTRACT

Gel polymer electrolytes are an indispensable part of flexible supercapacitors, since their various characteristics determine the device performance. Here, a composite gel electrolyte (FLPS) mainly consisting of polyvinyl alcohol (PVA), sodium alginate (SA), K3Fe(CN)6/K4Fe(CN)6, and LiCl is rationally designed, in which PVA and SA form a robust three-dimensional network, the redox pair of K3Fe(CN)6/K4Fe(CN)6 serves as a cross-linking agent with SA and even donates the oxidation-reduction reaction from the Fe3+/Fe2+ couple with additional capacitance for the device, and LiCl functions as an ion carrier and a water-retaining salt to improve the long-term stability of FLPS. Thus, the FLPS-based supercapacitor exhibits superior electrochemical characteristics, displaying impressive pseudocapacitance across all current densities and excellent cycling stability (∼99.07% of capacitance retention after 10,000 cycles). Moreover, the FLPS-based supercapacitor demonstrates great low-temperature working ability and pressure responsiveness, suggesting its freeze-resistance, flexibility, and pressure sensing potential. This work provides a promising strategy for preparing tough gel polymer electrolytes with both ion transfer and charge storage ability.

3.
Adv Mater ; 36(21): e2313088, 2024 May.
Article in English | MEDLINE | ID: mdl-38308465

ABSTRACT

The anion-specific effects of the salting-in and salting-out phenomena are extensively observed in hydrogels, whereas the cation specificity of hydrogels is rarely reported. Herein, a multi-step strategy including borax pre-gelation, saline soaking, freeze-drying, and rehydrating is developed to fabricate polyvinyl alcohol gels with cation specificity, exhibiting the specific ordering of effects on the mechanical properties of gels as Ca2+ > Li+ > Mg2+ >> Fe3+ > Cu2+ >> Co2+ ≈ Ni2+ ≈ Zn2+. The multiple effects of the fabrication strategy, including the electrostatic repulsion among cations, skeleton support function of graphene oxide nanosheets, and water absorption and retention of ions, endow the gels with the dual characteristics of hydrogels and aerogels (i.e., hydro-aerogels). The hydro-aerogels prepared with the cationic salting-out effect display attractive pressure sensing performance with excellent stability over 90 days and enable continuous monitoring of ambient humidity in real-time and effective work in seawater to detect various parameters (e.g., depth, salinity, and temperature). The hydro-aerogels prepared without borax pretreatment or using the cationic salting-in effect can serve as quasi-solid-state electrolytes in supercapacitors, with 99.59% capacitance retention after 10 000 cycles. This study realizes cation specificity in hydrogels and designs multifunctional hydro-aerogels for promising applications in various fields.

4.
Plant Methods ; 18(1): 90, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780217

ABSTRACT

BACKGROUND: The application of autopilot technology is conductive to achieving path planning navigation and liberating labor productivity. In addition, the self-driving vehicles can drive according to the growth state of crops to ensure the accuracy of spraying and pesticide effect. Navigation line detection is the core technology of self-driving technology, which plays a more important role in the development of Chinese intelligent agriculture. The general algorithms for seedling line extraction in the agricultural fields are for large seedling crops. At present, scholars focus more on how to reduce the impact of crop row adhesion on extraction of crop rows. However, for seedling crops, especially double-row sown seedling crops, the navigation lines cannot be extracted very effectively due to the lack of plants or the interference of rut marks caused by wheel pressure on seedlings. To solve these problems, this paper proposed an algorithm that combined edge detection and OTSU to determine the seedling column contours of two narrow rows for cotton crops sown in wide and narrow rows. Furthermore, the least squares were used to fit the navigation line where the gap between two narrow rows of cotton was located, which could be well adapted to missing seedlings and rutted print interference. RESULTS: The algorithm was developed using images of cotton at the seedling stage. Apart from that, the accuracy of route detection was tested under different lighting conditions and in maize and soybean at the seedling stage. According to the research results, the accuracy of the line of sight for seedling cotton was 99.2%, with an average processing time of 6.63 ms per frame; the accuracy of the line of sight for seedling corn was 98.1%, with an average processing time of 6.97 ms per frame; the accuracy of the line of sight for seedling soybean was 98.4%, with an average processing time of 6.72 ms per frame. In addition, the standard deviation of lateral deviation is 2 cm, and the standard deviation of heading deviation is 0.57 deg. CONCLUSION: The proposed rows detection algorithm could achieve state-of-the-art performance. Besides, this method could ensure the normal spraying speed by adapting to different shadow interference and the randomness of crop row growth. In terms of the applications, it could be used as a reference for the navigation line fitting of other growing crops in complex environments disturbed by shadow.

5.
J Environ Sci (China) ; 104: 225-232, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33985725

ABSTRACT

Chlorine dioxide (ClO2) disinfection usually does not produce halogenated disinfection by-products, but the formation of the inorganic by-product chlorite (ClO2-) is a serious consideration. In this study, the ClO2- formation rule in the ClO2 disinfection of drinking water was investigated in the presence of three representative reductive inorganics and four natural organic matters (NOMs), respectively. Fe2+ and S2- mainly reduced ClO2 to ClO2- at low concentrations. When ClO2 was consumed, the ClO2- would be further reduced by Fe2+ and S2-, leading to the decrease of ClO2-. The reaction efficiency of Mn2+ with ClO2 was lower than that of Fe2+ and S2-. It might be the case that MnO2 generated by the reaction between Mn2+ and ClO2 had adsorption and catalytic oxidation on Mn2+. However, Mn2+ would not reduce ClO2-. Among the four NOMs, humic acid and fulvic acid reacted with ClO2 actively, followed by bovine serum albumin, while sodium alginate had almost no reaction with ClO2. The maximum ClO2- yields of reductive inorganics (70%) was higher than that of NOM (around 60%). The lower the concentration of reductive substances, the more ClO2- could be produced by per unit concentration of reductive substances. The results of the actual water samples showed that both reductive inorganics and NOM played an important role in the formation of ClO2- in disinfection.


Subject(s)
Chlorine Compounds , Disinfectants , Drinking Water , Water Purification , Chlorides , Chlorine , Disinfection , Manganese Compounds , Oxides
6.
Materials (Basel) ; 11(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364845

ABSTRACT

A high-quality GaSe single crystal was grown by the Bridgman method. The X-ray rocking curve for the studied GaSe sample is symmetric and the Full Width at Half Maximum (FWHM) is only 46 arcs, which is the smallest value ever reported for GaSe crystals. The IR-transmittance is about 66% in the range from 500 to 4000 cm-1. The photoluminescence spectrum at 9.2 K shows a symmetric and sharp excition peak in 2.1046 eV. The results indicate that the as-grown GaSe crystal is of high crystalline quality. The as-grown ε -GaSe crystal has a p-type conductance with the resistivity of 10³ Ω/cm, and the Hall mobility is ~25 cm² V-1 s-1. Few-layer GaSe crystals were prepared through mechanical exfoliation from this high-quality crystal sample. Few-layer GaSe-based photodetectors were fabricated, which exhibit an on/off ratio of 104, a field-effect differential mobility of 0.4 cm² V-1 s-1, and have a fast response time less than 60 ms under light illumination.

7.
Zhonghua Nei Ke Za Zhi ; 48(8): 625-8, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-19954051

ABSTRACT

OBJECTIVE: To assess the diagnostic value of intraductal ultrasonography (IDUS)when the findings of endoscopic retrograde cholangiopancreatography (ERCP) were not clearly demonstrated. METHODS: One hundred and thirty-one cases of suspected biliary and pancreatic diseases were enrolled. IDUS was performed after unsatisfactory ERCP. Then the outcomes were correlated with the pathological results. RESULTS: Sixty-six benign and 58 malignant cases were clarified with additional IDUS after ERCP according to definite diagnostic criteria. The diagnostic accuracy was 94.3% and 95.1%; the sensitivity and specificity were 95.4% and 100%, 80.0% and 76.9%, respectively. Moreover, it could distinguish benign tissues from malignant ones successfully; the sensitivity and specificity were 78.7% and 88.6%. CONCLUSION: IDUS after ERCP yields higher diagnostic accuracy for complex biliary and pancreatic diseases and it is also more dependable in differentiating benign tissues from malignant ones than ERCP alone.


Subject(s)
Bile Duct Diseases/diagnostic imaging , Pancreatic Diseases/diagnostic imaging , Ultrasonography, Interventional , Adult , Aged , Aged, 80 and over , Cholangiopancreatography, Endoscopic Retrograde , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...