Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
3D Print Addit Manuf ; 11(1): 219-230, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389676

ABSTRACT

The aim of the study is to create a multiscale highly porous poly (ether-ether-ketone) (PEEK) structure while maintaining mechanical performance; the distribution of pores being generated by the manufacturing process combined with a porogen leaching operation. Salt at 70 wt% concentration was used as a porogen in a dry blend with PEEK powder sintered in the powder bed fusion process. The printed porous PEEK structures were examined and evaluated by scanning electron microscopy, microcomputed tomography, and mechanical testing. The PEEK structures incorporating 70 wt% salt achieved 79-86% porosity, a compressive yield strength of 4.1 MPa, and a yield strain of ∼60%. Due to the salt leaching process, the PEEK porous frameworks were fabricated without the need to drastically reduce the process parameters (defined by the energy density [ED]), hence maintaining the structural integrity and good mechanical performance. The compression results highlighted that the performance is influenced by the printing orientation, level of the PEEK particle coalescence (controlled here by the ED), pore/cell wall thickness, and subsequently, the overall porosity framework. The porous printed PEEK structures could find potential uses in a wide range of applications from tissue engineering, filtration and separation to catalysts, drug release, and gas storage.

2.
Dalton Trans ; 52(33): 11526-11534, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37540012

ABSTRACT

Regulating the structural and interfacial properties of transition metal phosphides (TMPs) by coupling carbon-based materials with large surface areas to enhance hydrogen evolution reaction (HER) performance presents significant progress for water splitting technology. Herein, we constructed a composite substrate of a three-dimensional porous graphene oxide matrix (3D-GO) embedded in nickel foam (NF) to grow a Co2P electrocatalyst. Well-defined gladiolus-like Co2P nanowire arrays tightly anchored on the substrate show enhanced electrochemical characteristics for the hydrogen evolution reaction (HER) based on the promoting roles of 3D porous reduced GO (3D-rGO) derived from 3D-GO, which promotes the dispersion of active components, improves the rate of electron transfer, and facilitates the transport of water molecules. As a result, the obtained Co2P@3D-rGO/NF electrode exhibits superior HER activity in 1.0 M KOH media, achieving overpotentials of 36.5 and 264.7 mV at current densities of 10 and 100 mA cm-2, respectively. The electrode also has a low Tafel slope of 55.5 mV dec-1, a large electrochemical surface area, and small charge-transfer resistance, further revealing its mechanism of high intrinsic activity. Moreover, the electrode exhibits excellent HER stability and durability without surface morphology and chemical state changes.

3.
Nanomicro Lett ; 15(1): 26, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36586003

ABSTRACT

Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target. Herein, a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants. Fe atoms are highly dispersed and fixed to the polymer microsphere, followed by a high-temperature decomposition, for the generation of carbon-based catalyst with a honeycomb-like structure. The as-prepared catalyst contains a large number of Fe/Co nanoparticles (Fe/Co NPs), providing the excellent catalytic activity and durability in oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity, and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle. Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.

4.
Adv Mater ; 34(52): e2200750, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35385149

ABSTRACT

Polyaryletherketone (PAEK) is emerging as an important high-performance polymer material in additive manufacturing (AM) benefiting from its excellent mechanical properties, good biocompatibility, and high-temperature stability. The distinct advantages of AM facilitate the rapid development of PAEK products with complex customized structures and functionalities, thereby enhancing their applications in various fields. Herein, the recent advances on AM of high-performance PAEKs are comprehensively reviewed, concerning the materials properties, AM processes, mechanical properties, and potential applications of additively manufactured PAEKs. To begin, an introduction to fundamentals of AM and PAEKs, as well as the advantages of AM of PAEKs is provided. Discussions are then presented on the material properties, AM processes, processing-matter coupling mechanism, thermal conductivity, crystallization characteristics, and microstructures of AM-processed PAEKs. Thereafter, the mechanical properties and anisotropy of additively manufactured PAEKs are discussed in depth. Their representative applications in biomedical, aerospace, electronics, and other fields are systematically presented. Finally, current challenges and possible solutions are discussed for the future development of high-performance AM polymers.

5.
ACS Appl Mater Interfaces ; 13(39): 46938-46950, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34559507

ABSTRACT

Smart response hydrogel has a broad application prospect in human health real-time monitoring due to its responses to a variety of stimuli. In this study, we developed a novel smart hydrogel dressing based on conductive MXene nanosheets and a temperature-sensitive PNIPAm polymer. γ-Methacryloxypropyltrimethoxysilane (KH570) was selected to functionalize the surface of MXene further to improve the interface compatibility between MXene and PNIPAm. Our prepared K-M/PNIPAm hydrogel was found to have a strain-sensitive property, as well as a respond to NIR phase change and volume change. When applied as a strain flexible sensor, this K-M/PNIPAm hydrogel exhibited a high strain sensitivity with a gauge factor (GF) of 4.491, a broad working strain range of ≈250%, a fast response of ∼160 ms, and good cycle stability (i.e., 3000 s at 20% strain). Besides, this K-M/PNIPAm hydrogel can be used as an efficient NIR light-controlled drug release carrier to achieve on-demand drug release. This work paved the way for the application of smart response hydrogel in human health real-time monitoring and NIR-controlled drug release functions.


Subject(s)
Drug Carriers/chemistry , Hydrogels/chemistry , Smart Materials/chemistry , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Acrylic Resins/radiation effects , Acrylic Resins/toxicity , Animals , Cell Line , Drug Carriers/pharmacology , Drug Carriers/radiation effects , Drug Carriers/toxicity , Drug Liberation/radiation effects , Elasticity , Hydrogels/pharmacology , Hydrogels/radiation effects , Hydrogels/toxicity , Infrared Rays , Male , Methacrylates/chemistry , Methacrylates/pharmacology , Methacrylates/radiation effects , Methacrylates/toxicity , Mice , Rats, Sprague-Dawley , Silanes/chemistry , Silanes/pharmacology , Silanes/radiation effects , Silanes/toxicity , Skin/drug effects , Smart Materials/pharmacology , Smart Materials/radiation effects , Smart Materials/toxicity , Stress, Mechanical , Tetracycline/chemistry , Titanium/chemistry , Titanium/pharmacology , Titanium/radiation effects , Titanium/toxicity , Wound Healing/drug effects
6.
J Colloid Interface Sci ; 546: 231-239, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30925431

ABSTRACT

In this work, a novel catalyst of oxygen reduction reaction (ORR) was designed and fabricated by electrospinning, photo-curing and carbonization, based on polymer poly(dimethylsilylene ethynylenephenyleneethynylene) (PMSEPE) and metal organic frameworks (MOFs)-Materiaux de l'Institute Lavosier-101(Fe) (MIL-101(Fe)). The optimal catalyst PMSEPE/MIL-101(Fe)-800, which was carbonized at 800 °C, presented a bamboo-like nanofiber structure with a high degree of graphitization, a high specific surface area (302.3 m2/g) and a high yield (64.17%). Fe3C particles were found to be encapsulated into the Fe-Si-N co-doped carbon nanofibers. In the electrochemical tests, PMSEPE/MIL-101(Fe)-800 showed an onset potential of 0.935 V (vs. RHE) and a diffusion limit current of 6.01 mA/cm2 (vs. RHE) in 0.1 M KOH aqueous solution, of which performances are competitive to commercial 20 wt% Pt/C. PMSEPE/MIL-101(Fe)-800 also exhibited a higher methanol tolerance and duration stability. Further Zn-air battery test used by PMSEPE/MIL-101(Fe)-800 suggested its potential for the application of fuel cell.

7.
Nanomicro Lett ; 11(1): 8, 2019 Jan 19.
Article in English | MEDLINE | ID: mdl-34137961

ABSTRACT

Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal-air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal-heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C (Zn/Co-N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (- 5.26 mA cm-2). In addition, we tested the suitability and durability of Zn/Co-N@PCNFs-800 as the oxygen cathode for a rechargeable Zn-air battery. The prepared Zn-air batteries exhibited a higher power density (83.5 mW cm-2), a higher specific capacity (640.3 mAh g-1), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.

8.
Nanoscale ; 10(36): 17021-17029, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-29923591

ABSTRACT

Sluggish kinetics and thermodynamic unfavorability restrict electrocatalysis for energy storage and conversion reactions such as oxygen reduction/evolution and hydrogen evolution reactions. Herein, we report the synthesis and electrochemical performance of novel core-shell nanoparticles@porous carbon microspheres. A unique core-shell architecture of dual-phase FeCo-based nanoparticles@heteroatom-doped carbon microspheres (FeCo@C MS) has been prepared via a two-step carbonization process from a reactive multifunctional core-double shell template. With the advantages of heterogeneous composition and architectural structure, the obtained FeCo@C MS exhibits excellent performances for the electrochemical oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), which are comparable to those of commercial Pt/C catalyst. As an excellent cathode catalyst of the Zn-air battery (ZAB), FeCo@C MS exhibits high discharge voltage of 1.27 V, high specific capacity of 503 mA h gZn-1, an energy density of 639 W h kgZn-1, and better cycling durability than the battery having a mixture of 20 wt% Pt/C and RuO2. This approach provides a new way to design structures with controlled morphology and excellent multifunctional electrocatalytic activity.

9.
Sci Rep ; 8(1): 1314, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358588

ABSTRACT

Poly Ether Ether Ketone (PEEK) is a high temperature polymer material known for its excellent chemical resistance, high strength and toughness. As a semi-crystalline polymer, PEEK can become very brittle during long crystallisation times and temperatures helped as well by its high content of rigid benzene rings within its chemical structure. This paper presents a simple quench crystallization method for preparation of PEEK thin films with the formation of a novel fibre-like crystal structure on the surface of the films. These quenched crystallised films show higher elongation at break when compared with conventional melt crystallised thin films incorporating spherulitic crystals, while the tensile strength of both types of films (quenched crystallised and conventional melt) remained the same. The fracture analysis carried out using microscopy revealed an interesting microstructure which evolves as a function of annealing time. Based on these results, a crystal growth mechanism describing the development of the fibre-like crystals on the surface of the quenched crystallised films is proposed.

10.
Chin J Integr Med ; 24(8): 606-612, 2018 Aug.
Article in English | MEDLINE | ID: mdl-26272550

ABSTRACT

OBJECTIVE: To compare the angiogenesis behaviors of vascular endothelial growth factor (VEGF) and Chinese medicine Xuefu Zhuyu Decoction (, XZD) treatments. METHODS: Human microvascular endothelial cells (HMEC-1) were treated with various concentrations of either XZD-containing serum (XZD-CS) or VEGF for 24, 48, and 72 h, respectively. Cell viability, proliferation, migration, adhesion, and in vitro tube formation assays were used to assess their angiogenic effects. RESULTS: VEGF promoted all cellular phases involved in angiogenesis including cell viability, proliferation, migration, adhesion, and tube formation (<0.05 or <0.01). Unlike the continuous promotion effects of VEGF at the above stages, XZD inhibited cell viability and proliferation (<0.05 or <0.01) and only promoted tube formation in the early phase of angiogenesis (<0.01). CONCLUSIONS: These two medications promote different angiogenesis behaviors, which might be an important reason for their distinct therapeutic profile in clinical usage.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Microvessels/cytology
11.
Sci Rep ; 7(1): 5266, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706250

ABSTRACT

A series of nanocomposites of cobalt embedded in N-doped nanoporous carbons, carbon nanotubes or hollow carbon onions have been synthesized by a one-step carbonization of metal-organic-framework ZIF-67. The effect of the carbonization temperature on the structural evolution of the resulting nanocomposites has been investigated in detail. Among the as-synthesized materials, the cobalt/nanoporous N-doped carbon composites have demonstrated excellent electrocatalytic activities and durability towards oxygen reduction reaction in alkaline medium. Compared to the benchmark Pt/C catalyst, the optimized Co@C-800 (carbonized at 800 °C) exhibited high oxygen reduction reaction activity with an onset potential of 0.92 V, and a half-wave potential of 0.82 V. Moreover, the optimized Co@C-800 also showed enhanced electrocatalytic activity towards oxygen evolution reaction from water splitting, with a low onset potential of 1.43 V and a potential of 1.61 V at 10 mA cm-2 current density. This work offered a simple solution to develop metal-organic-framework-derived materials for highly efficient electrochemical applications.

12.
J Mater Sci ; 52(10): 6004-6019, 2017.
Article in English | MEDLINE | ID: mdl-32226132

ABSTRACT

This paper discusses various methods of fabrication of plain and carbon-reinforced composite powders, as well as a range of powder characterisation test methods suitable for defining powders for laser sintering. Two milling processes (based on disc blades and rotatory cutting knives) were used as methods of fabrication of powders, starting from injection moulding granule grades, for comparison with current powders obtained directly from polymerisation processes. It was found that the milling process affects the particles properties. The rotary milling produced powders with superior properties in comparison with the disc milling method. Tests including particle size distribution, angle of repose, aspect ratio, sphericity and roundness of particles were employed to compare and assess the suitability of powders for laser sintering. The Brunauer-Emmett-Teller test was identified as a useful method to define surface roughness and porosity of the particles. The carbon fibre (Cf) Poly Ether Ketone (PEK) granules milled well and after an additional sieving process created a good quality powder. This is the first attempt to investigate properties of PEK powder with encapsulated Cf and follow their sintering profile through hot-stage microscopy. It is expected that this type of composite powder will create isotropic structures in comparison with the highly anisotropic properties given by the known dry mix composite powders, currently used in laser sintering.

13.
Nanoscale ; 7(48): 20674-84, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26599403

ABSTRACT

Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs.-0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm(-2) current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...