Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 16: 6179-6193, 2023.
Article in English | MEDLINE | ID: mdl-38116368

ABSTRACT

Background: Gouty arthritis is characterized by the accumulation of monosodium urate crystals (MSU) in the synovial joints and surrounding tissues. Mastoparan M (Mast-M) is a biologically active peptide composed of 14 amino acids, extracted from wasp venom. This study aims to assess the impact of Mast-M on in vitro and in vivo gouty arthritis induced by lipolyaccharide (LPS) plus MSU crystal stimulation. Methods: PMA-differentiated THP-1 macrophages were pre-treated with Mast-M or left untreated, followed by stimulation with LPS and MSU crystals. Cell lysates were collected to assess the expression of the NLRP3 inflammasome, inflammatory signaling pathways, and oxidative stress. Furthermore, to evaluate the in vivo anti-inflammatory effect of Mast-M, an experimental acute gouty arthritis mouse model was established through intra-articular injection of MSU crystals. Results: Mast-M treatment demonstrated significant inhibition of the phosphorylation of MAPKs/NF-κB signaling pathways and reduction in oxidative stress expression in LPS and MSU-induced THP-1 macrophages. This resulted in the suppression of downstream NLRP3 inflammasome activation and IL-1ß release. In vivo, Mast-M effectively attenuated the inflammation induced by MSU in mice with gouty arthritis. Specifically, Mast-M reduced swelling in the paws, inhibited the infiltration of neutrophils and macrophages into periarticular tissue, and decreased the activation of the NLRP3 inflammasome and IL-1ß production. Conclusion: Mast-M significantly improves gouty arthritis, and its potential mechanism may be achieved by inhibiting the MAPK/NF-κB pathway and alleviating oxidative stress, thus suppressing the activation of NLRP3 inflammasomes.

2.
J Atheroscler Thromb ; 30(9): 1176-1186, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-36436875

ABSTRACT

AIMS: Acute rupture or erosion of unstable atherosclerotic plaques is a major cause of adverse consequences of atherosclerotic cardiovascular disease, often leading to myocardial infarction or stroke. High uric acid (HUA) is associated with the increasing risk of cardiovascular events and death. However, the mechanism by which HUA promotes atherosclerosis and whether HUA affects plaque stability are still unclear. METHODS: We constructed an atherosclerotic Apoe-/- mouse model with HUA. The progression of atherosclerosis and plaques was determined by Oil Red O staining, hematoxylin and eosin (H&E) staining, and Masson staining. TdT-mediated dUTP nick-end labeling assay and immunohistochemistry were used to observe the changes of apoptosis and autophagy in plaques, respectively. Then, we validated the in vivo results with RAW 264.7 cell line. RESULTS: HUA promoted atherosclerosis and exacerbated plaque vulnerability, including significantly increased macrophage infiltration, lipid accumulation, enlarged necrotic cores, and decreased collagen fibers. HUA increased cell apoptosis and inhibited autophagy in plaques. In vitro results showed that HUA decreased cell viability and increased cell apoptosis in foam cells macrophages treated with oxidized low-density lipoprotein. An activator of autophagy, rapamycin, can partially reverse the increasing apoptosis. CONCLUSION: HUA promoted atherosclerosis and exacerbated plaque vulnerability, and HUA facilitates foam cell apoptosis by inhibiting autophagy.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/metabolism , Uric Acid , Mice, Knockout , Atherosclerosis/metabolism , Autophagy , Apoptosis
4.
Front Immunol ; 13: 931087, 2022.
Article in English | MEDLINE | ID: mdl-36177037

ABSTRACT

Aim: Numerous reports have demonstrated the key importance of macrophage-elicited metabolic inflammation in insulin resistance (IR). Our previous studies confirmed that hyperuricemia or high uric acid (HUA) treatment induced an IR state in several peripheral tissues to promote the development of type 2 diabetes mellitus (T2DM). However, the effect of HUA on glucose uptake and the insulin sensitivity of macrophages and its mechanism is unclear. Methods: To assess systemic IR, we generated hyperuricemic mice by urate oxidase knockout (UOX-KO). Then, glucose/insulin tolerance, the tissue uptake of 18F-fluorodeoxyglucose, body composition, and energy balance were assessed. Glucose uptake of circulating infiltrated macrophages in the liver was evaluated by glucose transporter type 4 (GLUT-4) staining. Insulin sensitivity and the insulin signaling pathway of macrophages were demonstrated using the 2-NBDG kit, immunoblotting, and immunofluorescence assays. The immunoprecipitation assay and LC-MS analysis were used to determine insulin receptor substrate 2 (IRS2) levels and its interacting protein enrichment under HUA conditions. Results: Compared to WT mice (10 weeks old), serum uric acid levels were higher in UOX-KO mice (WT, 182.3 ± 5.091 µM versus KO, 421.9 ± 45.47 µM). Hyperuricemic mice with metabolic disorders and systemic IR showed inflammatory macrophage recruitment and increased levels of circulating proinflammatory cytokines. HUA inhibited the nuclear translocation of GLUT-4 in hepatic macrophages, restrained insulin-induced glucose uptake and glucose tolerance, and blocked insulin IRS2/PI3K/AKT signaling. Meanwhile, HUA mediated the IRS2 protein degradation pathway and activated AMPK/mTOR in macrophages. LC-MS analysis showed that ubiquitination degradation could be involved in IRS2 and its interacting proteins to contribute to IR under HUA conditions. Conclusion: The data suggest that HUA-induced glucose intolerance in hepatic macrophages contributed to insulin resistance and impaired the insulin signaling pathway via IRS2-proteasome degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Hyperuricemia , Insulin Resistance , AMP-Activated Protein Kinases/metabolism , Animals , Cytokines/metabolism , Fluorodeoxyglucose F18 , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Transporter Type 4/metabolism , Hyperuricemia/metabolism , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Kupffer Cells/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Urate Oxidase , Uric Acid/pharmacology
5.
Front Pharmacol ; 13: 907133, 2022.
Article in English | MEDLINE | ID: mdl-35712715

ABSTRACT

Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.

6.
Mol Cell Endocrinol ; 547: 111599, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35181437

ABSTRACT

Uric acid (UA), the end-product of purine metabolism, is closely related to hepatic insulin resistance (IR). Autophagy is a conserved intracellular degradation process maintaining cellular homeostasis. Autophagy plays a protective role in obesity-related hepatic IR, but whether it occurs in high uric acid (HUA)-induced hepatic IR is unclear. In this study, spontaneously elevated UA level induced hepatic IR and facilitated hepatic autophagy degradation in uricase knockout (Uox-/-) mice. In vitro, HepG2 cells stimulated with HUA medium showed decreased glucose uptake and inhibition of insulin signaling pathways, concomitant with activation of autophagy, as manifested by increased conversion of LC3B-I to -II. Rapamycin, the autophagy activator, alleviated but the autophagy inhibitor trimethyl adenine (3-MA) aggravated HUA-induced IR in HepG2 cells. Similarly, rapamycin ameliorated and 3-MA worsened HUA-induced blood glucose level and hepatic IR in Uox-/- mice. Mechanistically, HUA enhanced AMPKα phosphorylation (p-AMPKα) and inhibited mammalian target of rapamycin phosphorylation (p-mTOR) in HepG2 cells. The levels of p-AMPKα and LC3B-II/I were downregulated in HepG2 cells transfected with small interfering RNA (siRNA) against AMPKα, which suggests that the AMPKα-mTOR pathway was involved in HUA-induced autophagy. Antioxidant N-acetyl-L-cysteine reversed elevated reactive oxygen species levels induced by HUA in HepG2 cells, and AMPKα level was also inhibited, which suggests that AMPKα activation may be derived from reactive oxygen species. Collectively, these findings demonstrate that HUA increased hepatic autophagy, and autophagy activation plays a protective role in hepatic IR, which may suggest a potential therapeutic target for hepatic IR derived from HUA.


Subject(s)
Insulin Resistance , Animals , Autophagy , Insulin/metabolism , Insulin Resistance/physiology , Mammals/metabolism , Mice , Reactive Oxygen Species/metabolism , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...