Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930194

ABSTRACT

In this study, an electrode slurry composed of molybdenum disulfide (MoS2) and vapor-grown carbon fiber (VGCF) prepared through a solid-phase synthesis method was blade-coated onto copper foil to form a thick film as the anode for lithium-ion batteries. In previously reported work, MoS2-based lithium-ion batteries have experienced gradual deformation, fracture, and pulverization of electrode materials during the charge and discharge cycling process. This leads to an unstable electrode structure and rapid decline in battery capacity. Furthermore, MoS2 nanosheets tend to aggregate over charge and discharge cycles, which diminishes the surface activity of the material and results in poor electrochemical performance. In this study, we altered the density of the MoS2-carbon fiber/Cu foil anode electrode by rolling. Three different densities of electrode sheets were obtained through varying rolling repetitions. Our study shows the best electrochemical performance was achieved at a material density of 2.2 g/cm3, maintaining a capacity of 427 mAh/g even after 80 cycles.

2.
Life Sci ; 327: 121815, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37263489

ABSTRACT

AIMS: Diabetic retinopathy (DR) is a common complication of diabetes that causes visual impairment and blindness in adults. This study aimed to explore the protective effects of n-Butylidenephthalide (BP) on hyperglycemia-treated RPE in vitro and in vivo. MAIN METHODS: C57BL/6 mice were injected with STZ by intraperitoneal to induce early DR and orally administrated with 2 mg/kg BP every day for twelve weeks. Body weight and blood glucose were measured once a week. The level of retina damage was determined by TUNEL assay and H&E staining. The outer blood-retinal barrier integrity and RPE65 expression of retina were evaluated by immunofluorescence. In in vitro study, ARPE-19 cells were long-term cultured with high glucose and BP for 8 days and studied for cell survival, tight junction integrity, RPE65 expression, angiogenic factors, mitochondria membrane potential (MMP), and ROS by MTT assay, Western blot, ß-galactosidase staining, immunofluorescence, JC-1, or DCFH-DA. KEY FINDINGS: The results indicate that BP suppressed the hyperglycemic effect and maintained retina anatomy normalization, as well as protected RPE cell survival, tight junction integrity, and RPE65 expression in vitro and in vivo. In vitro results showed BP stimulated high glucose-treated ARPE-19 cell proliferation and suppressed senescence via ERK pathway. Numerous ROS production and MMP imbalance were prevented by BP through Nrf-2/HO-1 pathway. BP inhibited high glucose-induced RPE neovascularization by VEGF dysregulation. SIGNIFICANCE: BP significantly protected tight junction integrity and RPE cellular physiology through ERK/Nrf-2/HO-1 pathway to prevent DR progression. Thus, BP has great potential to be developed therapeutic agents or adjuvants for DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Mice , Animals , Retinal Pigment Epithelium/metabolism , Diabetic Retinopathy/metabolism , Tight Junctions/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Signal Transduction , Blood Glucose/metabolism , Apoptosis , Diabetes Mellitus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...