Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0299959, 2024.
Article in English | MEDLINE | ID: mdl-38656995

ABSTRACT

Hazardous chemical vehicles are specialized vehicles used for transporting flammable gases, medical waste, and liquid chemicals, among other dangerous chemical substances. During their transportation, there are risks of fire, explosion, and leakage of hazardous materials, posing serious threats to human safety and the environment. To mitigate these possible hazards and decrease their probability, this study proposes a lightweight object detection method for hazardous chemical vehicles based on the YOLOv7-tiny model.The method first introduces a lightweight feature extraction structure, E-GhostV2 network, into the trunk and neck of the model to achieve effective feature extraction while reducing the burden of the model. Additionally, the PConv is used in the model's backbone to effectively reduce redundant computations and memory access, thereby enhancing efficiency and feature extraction capabilities. Furthermore, to address the problem of performance degradation caused by overemphasizing high-quality samples, the model adopts the WIoU loss function, which balances the training effect of high-quality and low-quality samples, enhancing the model's robustness and generalization performance. Experimental results demonstrate that the improved model achieves satisfactory detection accuracy while reducing the number of model parameters, providing robust support for theoretical research and practical applications in the field of hazardous chemical vehicle object detection.


Subject(s)
Algorithms , Hazardous Substances , Hazardous Substances/analysis , Humans
2.
Front Comput Neurosci ; 18: 1356447, 2024.
Article in English | MEDLINE | ID: mdl-38404511

ABSTRACT

Colorectal polyp is an important early manifestation of colorectal cancer, which is significant for the prevention of colorectal cancer. Despite timely detection and manual intervention of colorectal polyps can reduce their chances of becoming cancerous, most existing methods ignore the uncertainties and location problems of polyps, causing a degradation in detection performance. To address these problems, in this paper, we propose a novel colorectal image analysis method for polyp diagnosis via PAM-Net. Specifically, a parallel attention module is designed to enhance the analysis of colorectal polyp images for improving the certainties of polyps. In addition, our method introduces the GWD loss to enhance the accuracy of polyp diagnosis from the perspective of polyp location. Extensive experimental results demonstrate the effectiveness of the proposed method compared with the SOTA baselines. This study enhances the performance of polyp detection accuracy and contributes to polyp detection in clinical medicine.

3.
Opt Lett ; 48(23): 6300-6303, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039252

ABSTRACT

Volumetric fluorescence microscopy has a great demand for high-resolution (HR) imaging and comes at the cost of sophisticated imaging solutions. Image super-resolution (SR) methods offer an effective way to recover HR images from low-resolution (LR) images. Nevertheless, these methods require pixel-level registered LR and HR images, posing a challenge in accurate image registration. To address these issues, we propose a novel registration-free image SR method. Our method conducts SR training and prediction directly on unregistered LR and HR volume neuronal images. The network is built on the CycleGAN framework and the 3D UNet based on attention mechanism. We evaluated our method on LR (5×/0.16-NA) and HR (20×/1.0-NA) fluorescence volume neuronal images collected by light-sheet microscopy. Compared to other super-resolution methods, our approach achieved the best reconstruction results. Our method shows promise for wide applications in the field of neuronal image super-resolution.

4.
Sensors (Basel) ; 23(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37687893

ABSTRACT

Currently, most chemical transmission equipment relies on bearings to support rotating shafts and to transmit power. However, bearing defects can lead to a series of failures in the equipment, resulting in reduced production efficiency. To prevent such occurrences, this paper proposes an improved bearing defect detection algorithm based on YOLOv5. Firstly, to mitigate the influence of the similarity between bearing defects and non-defective regions on the detection performance, gamma transformation is introduced in the preprocessing stage of the model to adjust the image's grayscale and contrast. Secondly, to better capture the details and semantic information of the defects, this approach incorporates the ResC2Net model with a residual-like structure during the feature-extraction stage, enabling more nonlinear transformations and channel interaction operations so as to enhance the model's perception and representation capabilities of the defect targets. Additionally, PConv convolution is added in the feature fusion part to increase the network depth and better capture the detailed information of defects while maintaining time complexity. The experimental results demonstrate that the GRP-YOLOv5 model achieves a mAP@0.5 of 93.5%, a mAP@0.5:0.95 of 52.7%, and has a model size of 25 MB. Compared to other experimental models, GRP-YOLOv5 exhibits excellent performance in bearing defect detection accuracy. However, the model's FPS (frames per second) performance is not satisfactory. Despite its small size of 25 MB, the processing speed is relatively slow, which may have some impact on real-time or high-throughput applications. This limitation should be considered in future research and in the optimization efforts to improve the overall performance of the model.

5.
Entropy (Basel) ; 25(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36832623

ABSTRACT

Understanding the evolutionary patterns of real-world complex systems such as human interactions, biological interactions, transport networks, and computer networks is important for our daily lives. Predicting future links among the nodes in these dynamic networks has many practical implications. This research aims to enhance our understanding of the evolution of networks by formulating and solving the link-prediction problem for temporal networks using graph representation learning as an advanced machine learning approach. Learning useful representations of nodes in these networks provides greater predictive power with less computational complexity and facilitates the use of machine learning methods. Considering that existing models fail to consider the temporal dimensions of the networks, this research proposes a novel temporal network-embedding algorithm for graph representation learning. This algorithm generates low-dimensional features from large, high-dimensional networks to predict temporal patterns in dynamic networks. The proposed algorithm includes a new dynamic node-embedding algorithm that exploits the evolving nature of the networks by considering a simple three-layer graph neural network at each time step and extracting node orientation by using Given's angle method. Our proposed temporal network-embedding algorithm, TempNodeEmb, is validated by comparing it to seven state-of-the-art benchmark network-embedding models. These models are applied to eight dynamic protein-protein interaction networks and three other real-world networks, including dynamic email networks, online college text message networks, and human real contact datasets. To improve our model, we have considered time encoding and proposed another extension to our model, TempNodeEmb++. The results show that our proposed models outperform the state-of-the-art models in most cases based on two evaluation metrics.

6.
Soft comput ; 27(5): 2251-2268, 2023.
Article in English | MEDLINE | ID: mdl-36694866

ABSTRACT

In recent years, the new type of coronary pneumonia (COVID-19) has become a highly contagious disease worldwide, posing a serious threat to the public health. This paper is based on the SEIR model of the new coronavirus pneumonia, considering the impact of cold chain input and re-positive on the spread of the virus in the COVID-19. In the process of model design, the food cold chain and re-positive are used as parameters, and its stability is analyzed and simulated. The experimental results show that taking into account the cold chain input and re-positive can effectively simulate the spread of the epidemic. The research results have important research value and practical significance for the prevention and control of the COVID-19 and the prediction of important time nodes.

7.
Entropy (Basel) ; 24(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421517

ABSTRACT

With the explosive growth of the amount of information in social networks, the recommendation system, as an application of social networks, has attracted widespread attention in recent years on how to obtain user-interested content in massive data. At present, in the process of algorithm design of the recommending system, most methods ignore structural relationships between users. Therefore, in this paper, we designed a personalized sliding window for different users by combining timing information and network topology information, then extracted the information sequence of each user in the sliding window and obtained the similarity between users through sequence alignment. The algorithm only needs to extract part of the data in the original dataset, and the time series comparison shows that our method is superior to the traditional algorithm in recommendation Accuracy, Popularity, and Diversity.

8.
Neural Process Lett ; : 1-22, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35495852

ABSTRACT

At present, the Corona Virus Disease 2019 (COVID-19) is ravaging the world, bringing great impact on people's life safety and health as well as the healthy development of economy and society, so the research on the prediction of the development trend of the epidemic is crucial. In this paper, we focus on the prevention and control of epidemic using the relevant technologies in the field of artificial intelligence and signal analysis. With the unknown principle of epidemic transmission, we first smooth out the complex and variable epidemic data through the empirical mode decomposition model to obtain the change trends of epidemic data at different time scales. On this basis, the change trends under different time scales are trained using an extreme learning machine to obtain the corresponding prediction values, and finally the epidemic prediction results are obtained by fitting through Adaptive Network-based Fuzzy Inference System. The experimental results show that the algorithm has good learning ability, especially in the prediction of time-series sequences can guarantee the accuracy rate while having low time complexity. Therefore, this paper not only plays a theoretical support for epidemic prevention and control, but also plays an important role in the construction of public emergency health system in the long run.

9.
Contrast Media Mol Imaging ; 2022: 1732915, 2022.
Article in English | MEDLINE | ID: mdl-35280707

ABSTRACT

This study was aimed at exploring the efficacy of morphine combined with mechanical ventilation in the treatment of heart failure with artificial intelligence algorithms. The cardiac magnetic resonance imaging (MRI) under the watershed segmentation algorithm was proposed, and the local grayscale clustering watershed (LGCW) model was designed in this study. A total of 136 patients with acute left heart failure were taken as the research objects and randomly divided into the control group (conventional treatment) and the experimental group (morphine combined with mechanical ventilation), with 68 cases in each group. The left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), left ventricular ejection fraction (LVEF), N-terminal pro-brain natriuretic peptide (NT-proBNP), arterial partial pressure of oxygen (PaO2), and arterial partial pressure of carbon dioxide (PaCO2) were observed. The results showed that the mean absolute deviation (MAD) and maximum mean absolute deviation (max-MAD) of the LGCW model were lower than those of the fuzzy k-nearest neighbor (FKNN) algorithm and local gray-scale clustering model (LGSCm). The Dice metric was also significantly higher than that of other algorithms with statistically significant differences (P < 0.05). After treatment, LVEDD, LVESD, and NT-proBNP of patients in the experimental group were significantly lower than those in the control group, and LVEF in the experimental group was higher than that in the control group (P < 0.05). PaO2 of patients in the experimental group was also significantly higher than that in the control group (P < 0.05). It suggested that the LGCW model had a better segmentation effect, and morphine combined with mechanical ventilation gave a better clinical efficacy in the treatment of acute left heart failure, improving the patients' cardiac function and arterial blood gas effectively.


Subject(s)
Heart Failure , Ventricular Function, Left , Artificial Intelligence , Heart Failure/diagnostic imaging , Heart Failure/therapy , Humans , Magnetic Resonance Imaging , Morphine/therapeutic use , Respiration, Artificial , Stroke Volume
10.
Phys Rev E ; 105(2-1): 024310, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35291089

ABSTRACT

In networks of nonlinear oscillators, symmetries place hard constraints on the system that can be exploited to predict universal dynamical features and steady states, providing a rare generic organizing principle for far-from-equilibrium systems. However, the robustness of this class of theories to symmetry-disrupting imperfections is untested in free-running (i.e., non-computer-controlled) systems. Here, we develop a model experimental reaction-diffusion network of chemical oscillators to test applications of the theory of dynamical systems with symmeries in the context of self-organizing systems relevant to biology and soft robotics. The network is a ring of four microreactors containing the oscillatory Belousov-Zhabotinsky reaction coupled to nearest neighbors via diffusion. Assuming homogeneity across the oscillators, theory predicts four categories of stable spatiotemporal phase-locked periodic states and four categories of invariant manifolds that guide and structure transitions between phase-locked states. In our experiments, we observed that three of the four phase-locked states were displaced from their idealized positions and, in the ensemble of measurements, appeared as clusters of different shapes and sizes, and that one of the predicted states was absent. We also observed the predicted symmetry-derived synchronous clustered transients that occur when the dynamical trajectories coincide with invariant manifolds. Quantitative agreement between experiment and numerical simulations is found by accounting for the small amount of experimentally determined heterogeneity in intrinsic frequency. We further elucidate how different patterns of heterogeneity impact each attractor differently through a bifurcation analysis. We show that examining bifurcations along invariant manifolds provides a general framework for developing intuition about how chemical-specific dynamics interact with topology in the presence of heterogeneity that can be applied to other oscillators in other topologies.

11.
Commun Biol ; 5(1): 82, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064204

ABSTRACT

The current paradigm in brain research focuses on individual brain rhythms, their spatiotemporal organization, and specific pairwise interactions in association with physiological states, cognitive functions, and pathological conditions. Here we propose a conceptually different approach to understanding physiologic function as emerging behavior from communications among distinct brain rhythms. We hypothesize that all brain rhythms coordinate as a network to generate states and facilitate functions. We analyze healthy subjects during rest, exercise, and cognitive tasks and show that synchronous modulation in the micro-architecture of brain rhythms mediates their cross-communications. We discover that brain rhythms interact through an ensemble of coupling forms, universally observed across cortical areas, uniquely defining each physiological state. We demonstrate that a dynamic network regulates the collective behavior of brain rhythms and that network topology and links strength hierarchically reorganize with transitions across states, indicating that brain-rhythm interactions play an essential role in generating physiological states and cognition.


Subject(s)
Brain/physiology , Cognition/physiology , Nerve Net/physiology , Adult , Electroencephalography , Humans , Male , Young Adult
12.
Diagnostics (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34943501

ABSTRACT

BACKGROUND: High-quality colonoscopy is essential to prevent the occurrence of colorectal cancers. The data of colonoscopy are mainly stored in the form of images. Therefore, artificial intelligence-assisted colonoscopy based on medical images is not only a research hotspot, but also one of the effective auxiliary means to improve the detection rate of adenomas. This research has become the focus of medical institutions and scientific research departments and has important clinical and scientific research value. METHODS: In this paper, we propose a YOLOv5 model based on a self-attention mechanism for polyp target detection. This method uses the idea of regression, using the entire image as the input of the network and directly returning the target frame of this position in multiple positions of the image. In the feature extraction process, an attention mechanism is added to enhance the contribution of information-rich feature channels and weaken the interference of useless channels; Results: The experimental results show that the method can accurately identify polyp images, especially for the small polyps and the polyps with inconspicuous contrasts, and the detection speed is greatly improved compared with the comparison algorithm. CONCLUSIONS: This study will be of great help in reducing the missed diagnosis of clinicians during endoscopy and treatment, and it is also of great significance to the development of clinicians' clinical work.

13.
BMC Bioinformatics ; 22(1): 187, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33845763

ABSTRACT

BACKGROUND: Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug-drug, drug-disease, and protein-protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. RESULTS: We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and [Formula: see text] are the top 3 best performers on all five datasets. CONCLUSIONS: This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug-drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.


Subject(s)
Drug Discovery , Machine Learning , Algorithms , Drug Interactions
14.
Sci Rep ; 10(1): 18082, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33093522

ABSTRACT

In the multi-effect evaporation salt making process, the smooth operation of the salt making process is crucial. As the salt production process continues, many unstable factors will cause the salt production process not to proceed smoothly. These factors can be discovered in advance by predicting the salt production data, thus, it is of great significance to predict the multi-effect evaporation salt production data. In the process of multi-effect evaporation and salt production, the multiple salt-making devices make the influence between the parameters closer, and the influence of a single parameter on itself is sometimes ductile. Therefore, the data of multi-effect evaporation and salt production have the characteristics of high dimensions, high complexity and temporal information. If the historical salt production data is used for data prediction directly, the prediction model will take a long time and the prediction effect is not good. Thus, how to predict the multi-effect evaporation salt production data is the main research problem of this paper. In view of the above problems, according to the characteristics of multi-effect evaporation salt production data, this paper analyzes and improves the self encoder for feature extraction of multi effect-evaporation salt production data, so as to solve the problem of high dimensions and high complexity of salt production data. On this basis, combined with the time-series information contained in the salt production data, a multi-effect evaporation salt production data prediction model is proposed based on long-term and short-term memory cycle neural network to solve the prediction problem of time-series salt production data. Experiments show that the prediction model can predict and prevent the problems in salt production line in advance. It has a certain theoretical research value and application value in the intelligent production process and production line optimization of salt chemical industry.

15.
J Math Neurosci ; 10(1): 15, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32915327

ABSTRACT

Neural populations with strong excitatory recurrent connections can support bistable states in their mean firing rates. Multiple fixed points in a network of such bistable units can be used to model memory retrieval and pattern separation. The stability of fixed points may change on a slower timescale than that of the dynamics due to short-term synaptic depression, leading to transitions between quasi-stable point attractor states in a sequence that depends on the history of stimuli. To better understand these behaviors, we study a minimal model, which characterizes multiple fixed points and transitions between them in response to stimuli with diverse time- and amplitude-dependencies. The interplay between the fast dynamics of firing rate and synaptic responses and the slower timescale of synaptic depression makes the neural activity sensitive to the amplitude and duration of square-pulse stimuli in a nontrivial, history-dependent manner. Weak cross-couplings further deform the basins of attraction for different fixed points into intricate shapes. We find that while short-term synaptic depression can reduce the total number of stable fixed points in a network, it tends to strongly increase the number of fixed points visited upon repetitions of fixed stimuli. Our analysis provides a natural explanation for the system's rich responses to stimuli of different durations and amplitudes while demonstrating the encoding capability of bistable neural populations for dynamical features of incoming stimuli.

16.
J Theor Biol ; 504: 110414, 2020 11 07.
Article in English | MEDLINE | ID: mdl-32712150

ABSTRACT

Mining essential protein is crucial for discovering the process of cellular organization and viability. At present, there are many computational methods for essential proteins detecting. However, these existing methods only focus on the topological information of the networks and ignore the biological information of proteins, which lead to low accuracy of essential protein identification. Therefore, this paper presents a new essential proteins prediction strategy, called DEP-MSB which integrates a variety of biological information including gene expression profiles, GO annotations, and Domain interaction strength. In order to evaluate the performance of DEP-MSB, we conduct a series of experiments on the yeast PPI network and the experimental results have shown that the proposed algorithm DEP-MSB is more superior to the other existing traditional methods and has obviously improvement in prediction accuracy.


Subject(s)
Protein Interaction Mapping , Proteins , Algorithms , Computational Biology , Protein Interaction Maps , Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptome
17.
Sci Rep ; 9(1): 17418, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31758076

ABSTRACT

The incidence of colorectal cancer (colorectal cancer, CRC) in China has increased in recent years, and its mortality rate has become one of the highest among all cancers. CRC also increasingly affects people's health and quality of life, and the workloads of medical doctors have further increased due to the lack of sufficient medical resources in China. The goal of this study was to construct an automated expert system using a deep learning technique to predict the probability of early stage CRC based on the patient's case report and the patient's attributes. Compared with previous prediction methods, which are either based on sophisticated examinations or have high computational complexity, this method is shown to provide valuable information such as suggesting potentially important early signs to assist in early diagnosis, early treatment and prevention of CRC, hence helping medical doctors reduce the workloads of endoscopies and other treatments.


Subject(s)
Algorithms , Early Detection of Cancer/methods , Intestinal Neoplasms/diagnosis , Neural Networks, Computer , Humans
18.
Chaos ; 29(1): 013126, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709124

ABSTRACT

We study the dynamics of a generalized version of the famous Kuramoto-Sakaguchi coupled oscillator model. In the classic version of this system, all oscillators are governed by the same ordinary differential equation (ODE), which depends on the order parameter of the oscillator configuration. The order parameter is the arithmetic mean of the configuration of complex oscillator phases, multiplied by some constant complex coupling factor. In the generalized model, we consider that all oscillators are still governed by the same ODE, but the order parameter is allowed to be any complex linear combination of the complex oscillator phases, so the oscillators are no longer necessarily weighted identically in the order parameter. This asymmetric version of the K-S model exhibits a much richer variety of steady-state dynamical behavior than the classic symmetric version; in addition to stable synchronized states, the system may possess multiple stable (N-1,1) states, in which all but one of the oscillators are synchronized, as well as multiple families of neutrally stable states or closed orbits, in which no two oscillators are synchronized. We present an exhaustive description of the possible steady state dynamical behaviors; our classification depends on the complex coefficients that determine the order parameter. We use techniques from group theory and hyperbolic geometry to reduce the dynamic analysis to a 2D flow on the unit disc, which has geometric significance relative to the hyperbolic metric. The geometric-analytic techniques we develop can in turn be applied to study even more general versions of Kuramoto oscillator networks.

19.
Entropy (Basel) ; 21(1)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-33266755

ABSTRACT

GDP is a classic indicator of the extent of national economic development. Research based on the World Trade Network has found that a country's GDP depends largely on the products it exports. In order to increase the competitiveness of a country and further increase its GDP, a crucial issue is finding the right direction to upgrade the industry so that the country can enhance its competitiveness. The proximity indicator measures the similarity between products and can be used to predict the probability that a country will develop a new industry. On the other hand, the Fitness-Complexity algorithm can help to find the important products and developing countries. In this paper, we find that the maximum of the proximity between a certain product and a country's existing products is highly correlated with the probability that the country exports this new product in the next year. In addition, we find that the more products that are related to a certain product, the higher probability of the emergence of the new product. Finally, we combine the proximity indicator and the Fitness-Complexity algorithm and then attempt to provide a recommendation list of new products that can help developing countries to upgrade their industry. A few examples are given in the end.

20.
J Theor Biol ; 455: 26-38, 2018 10 14.
Article in English | MEDLINE | ID: mdl-29981337

ABSTRACT

In the post-genomic era, one of the important tasks is to identify protein complexes and functional modules from high-throughput protein-protein interaction data, so that we can systematically analyze and understand the molecular functions and biological processes of cells. Although a lot of functional module detection studies have been proposed, how to design correctly and efficiently functional modules detection algorithms is still a challenging and important scientific problem in computational biology. In this paper, we present a novel Network Hierarchy-Based method to detect functional modules in PPI networks (named NHB-FMD). NHB-FMD first constructs the hierarchy tree corresponding to the PPI network and then encodes the tree such that genetic algorithm is employed to obtain the hierarchy tree with Maximum Likelihood. After that functional module partitioning is performed based on it and the best partitioning is selected as the result. Experimental results in the real PPI networks have shown that the proposed algorithm not only significantly outperforms the state-of-the-art methods but also can detect protein modules more effectively and accurately.


Subject(s)
Algorithms , Models, Genetic , Protein Interaction Mapping , Protein Interaction Maps , Proteins , Proteins/chemistry , Proteins/genetics , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...