Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Appl Phys Lett ; 124(5): 053702, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38313557

ABSTRACT

Visualizing micro- and nano-scale biological entities requires high-resolution imaging and is conventionally achieved via optical microscopic techniques. Optical diffraction limits their resolution to ∼200 nm. This limit can be overcome by using ions with ∼1 MeV energy. Such ions penetrate through several micrometers in tissues, and their much shorter de Broglie wavelengths indicate that these ion beams can be focused to much shorter scales and hence can potentially facilitate higher resolution as compared to the optical techniques. Proton microscopy with ∼1 MeV protons has been shown to have reasonable inherent contrast between sub-cellular organelles. However, being a transmission-based modality, it is unsuitable for in vivo studies and cannot facilitate three-dimensional imaging from a single raster scan. Here, we propose proton-induced acoustic microscopy (PrAM), a technique based on pulsed proton irradiation and proton-induced acoustic signal collection. This technique is capable of label-free, super-resolution, 3D imaging with a single raster scan. Converting radiation energy into ultrasound enables PrAM with reflection mode detection, making it suitable for in vivo imaging and probing deeper than proton scanning transmission ion microscopy (STIM). Using a proton STIM image of HeLa cells, a coupled Monte Carlo+k-wave simulations-based feasibility study has been performed to demonstrate the capabilities of PrAM. We demonstrate that sub-50 nm lateral (depending upon the beam size and energy) and sub-micron axial resolution (based on acoustic detection bandwidth and proton beam pulse width) can be obtained using the proposed modality. By enabling visualization of biological phenomena at cellular and subcellular levels, this high-resolution microscopic technique enhances understanding of intricate cellular processes.

2.
Sci Rep ; 14(1): 1418, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228747

ABSTRACT

FLASH-radiotherapy may provide significant sparing of healthy tissue through ultra-high dose rates in protons, electrons, and x-rays while maintaining the tumor control. Key factors for the FLASH effect might be oxygen depletion, the immune system, and the irradiated blood volume, but none could be fully confirmed yet. Therefore, further investigations are necessary. We investigated the protective (tissue sparing) effect of FLASH in proton treatment using an in-vivo mouse ear model. The right ears of Balb/c mice were irradiated with 20 MeV protons at the ion microprobe SNAKE in Garching near Munich by using three dose rates (Conv = 0.06 Gy/s, Flash9 = 9.3 Gy/s and Flash930 = 930 Gy/s) at a total dose of 23 Gy or 33 Gy. The ear thickness, desquamation, and erythema combined in an inflammation score were measured for 180 days. The cytokines TGF-ß1, TNF-α, IL1α, and IL1ß were analyzed in the blood sampled in the first 4 weeks and at termination day. No differences in inflammation reactions were visible in the 23 Gy group for the different dose rates. In the 33 Gy group, the ear swelling and the inflammation score for Flash9 was reduced by (57 ± 12) % and (67 ± 17) % and for Flash930 by (40 ± 13) % and (50 ± 17) % compared to the Conv dose rate. No changes in the cytokines in the blood could be measured. However, an estimation of the irradiated blood volume demonstrates, that 100-times more blood is irradiated when using Conv compared to using Flash9 or Flash930. This indicates that blood might play a role in the underlying mechanisms in the protective effect of FLASH.


Subject(s)
Neoplasms , Protons , Animals , Mice , Ear , Inflammation , Cytokines , Radiotherapy Dosage
3.
J Inflamm Res ; 15: 3661-3675, 2022.
Article in English | MEDLINE | ID: mdl-35783248

ABSTRACT

Purpose: Radiotherapy (RT) is the mainstay treatment for head and neck cancers. However, chronic and recurrent upper respiratory tract infections and inflammation have been commonly reported in patients post-RT. The underlying mechanisms remain poorly understood. Method and Materials: We used a well-established model of human nasal epithelial cells (hNECs) that forms a pseudostratified layer in the air-liquid interface (ALI) and exposed it to single or repeated moderate dose γ-irradiation (1Gy). We assessed the DNA damage and evaluated the biological properties of hNECs at different time points post-RT. Further, we explored the host immunity alterations in irradiated hNECs with polyinosinic-polycytidylic acid sodium salt (poly [I:C]) and lipopolysaccharides (LPS). Results: IR induced DNA double strand breaks (DSBs) and triggered DNA damage response in hNECs. Repeated IR significantly reduced basal cell proliferation with low expression of p63/KRT5 and Ki67, induced cilia loss and inhibited mucus secretion. In addition, IR decreased ZO-1 expression and caused a significant decline in the transepithelial electrical resistance (TEER). Moreover, hyperreactive response against pathogen invasion and disrupted epithelial host defense can be observed in hNECs exposed to repeated IR. Conclusion: Our study suggests that IR induced prolonged structural and functional impairments of hNECs may contribute to patients post-RT with increased risk of developing chronic and recurrent upper respiratory tract infection and inflammation.

4.
Nat Commun ; 12(1): 4657, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341359

ABSTRACT

Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy.


Subject(s)
Alpha Particles , Cell Nucleus/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Histones/metabolism , Nanodiamonds/radiation effects , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , HeLa Cells , Hep G2 Cells , Humans , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Nanodiamonds/chemistry , Nanodiamonds/ultrastructure , Phosphorylation/radiation effects
5.
Phys Med ; 76: 277-284, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32738775

ABSTRACT

There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models.


Subject(s)
Proton Therapy , Protons , Cell Survival , Monte Carlo Method , Radiometry , Uncertainty
6.
Sci Rep ; 6: 33781, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27653553

ABSTRACT

Alzheimer Disease (AD) is a progressive neurological disorder characterized by the deposition of amyloid beta (Aß), predominantly the Aß1-42 form, in the brain. Mitochondrial dysfunction and impaired energy metabolism are important components of AD pathogenesis. However, the causal and temporal relationships between them and AD pathology remain unclear. Using a novel C. elegans AD strain with constitutive neuronal Aß1-42 expression that displays neuromuscular defects and age-dependent behavioural dysfunction reminiscent of AD, we have shown that mitochondrial bioenergetic deficit is an early event in AD pathogenesis, preceding dysfunction of mitochondrial electron transfer chain (ETC) complexes and the onset of global metabolic failure. These results are consistent with an emerging view that AD may be a metabolic neurodegenerative disease, and also confirm that Aß-driven metabolic and mitochondrial effects can be reproduced in organisms separated by large evolutionary distances.

7.
Nat Commun ; 6: 8832, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26560858

ABSTRACT

The combination of an optical microscope and a luminescent probe plays a pivotal role in biological imaging because it allows for probing subcellular structures. However, the optical resolutions are largely constrained by Abbe's diffraction limit, and the common dye probes often suffer from photobleaching. Here we present a new method for subwavelength imaging by combining lanthanide-doped upconversion nanocrystals with the ionoluminescence imaging technique. We experimentally observed that the ion beam can be used as a new form of excitation source to induce photon upconversion in lanthanide-doped nanocrystals. This approach enables luminescence imaging and simultaneous mapping of cellular structures with a spatial resolution of sub-30 nm.

8.
Antioxid Redox Signal ; 23(3): 256-79, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-25544992

ABSTRACT

SIGNIFICANCE: The nematode Caenorhabditis elegans is a widely used model organism for research into aging. However, nematodes diverged from other animals between 600 and 1300 million years ago. Beyond the intuitive impression that some aspects of aging appear to be universal, is there evidence that insights into the aging process of nematodes may be applicable to humans? RECENT ADVANCES: There have been a number of results in nematodes that appear to contradict long-held beliefs about mechanisms and causes of aging. For example, ablation of several key antioxidant systems has often failed to result in lifespan shortening in C. elegans. CRITICAL ISSUES: While it is clear that some central signaling pathways controlling lifespan are broadly conserved across large evolutionary distances, it is less clear to what extent downstream molecular mechanisms of aging are conserved. In this review we discuss the biology of C. elegans and mammals in the context of aging and age-dependent diseases. We consider evidence from studies that attempt to investigate basic, possibly conserved mechanisms of aging especially in the context of the free radical theory of aging. Practical points, such as the need for blinding of lifespan studies and for appropriate biomarkers, are also considered. FUTURE DIRECTIONS: As data on the aging process(es) in different organisms increase, it is becoming increasingly clear that there are both conserved (public) and private aspects to aging. It is important to explore the dividing lines between these two aspects and to be aware of the large gray areas in-between.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Models, Animal , Animals , Caenorhabditis elegans/immunology , DNA, Mitochondrial/genetics , Free Radicals/metabolism , Humans , Mammals/immunology , Mammals/metabolism , Mutation , Oxidation-Reduction , Signal Transduction
9.
Biophys J ; 104(7): 1419-25, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23561518

ABSTRACT

Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution.


Subject(s)
Gold/chemistry , Gold/metabolism , Imaging, Three-Dimensional/methods , Metal Nanoparticles , Microscopy/methods , HeLa Cells , Humans
10.
Cogn Affect Behav Neurosci ; 13(1): 80-93, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23224782

ABSTRACT

Past research has identified an event-related potential (ERP) marker for vocal emotional encoding and has highlighted vocal-processing differences between male and female listeners. We further investigated this ERP vocal-encoding effect in order to determine whether it predicts voice-related changes in listeners' memory for verbal interaction content. Additionally, we explored whether sex differences in vocal processing would affect such changes. To these ends, we presented participants with a series of neutral words spoken with a neutral or a sad voice. The participants subsequently encountered these words, together with new words, in a visual word recognition test. In addition to making old/new decisions, the participants rated the emotional valence of each test word. During the encoding of spoken words, sad voices elicited a greater P200 in the ERP than did neutral voices. While the P200 effect was unrelated to a subsequent recognition advantage for test words previously heard with a neutral as compared to a sad voice, the P200 did significantly predict differences between these words in a concurrent late positive ERP component. Additionally, the P200 effect predicted voice-related changes in word valence. As compared to words studied with a neutral voice, words studied with a sad voice were rated more negatively, and this rating difference was larger, the larger the P200 encoding effect was. While some of these results were comparable in male and female participants, the latter group showed a stronger P200 encoding effect and qualitatively different ERP responses during word retrieval. Estrogen measurements suggested the possibility that these sex differences have a genetic basis.


Subject(s)
Brain/physiology , Emotions/physiology , Evoked Potentials/physiology , Memory/physiology , Sex Characteristics , Speech Perception/physiology , Adult , Electroencephalography , Female , Humans , Male , Recognition, Psychology/physiology , Voice
11.
Biotechnol Adv ; 31(5): 563-92, 2013.
Article in English | MEDLINE | ID: mdl-23022622

ABSTRACT

Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.


Subject(s)
Aging/drug effects , Antioxidants/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Nanomedicine/methods , Animals , Antioxidants/pharmacokinetics , Humans , Nanoparticles/administration & dosage
12.
Biophys J ; 101(7): 1788-93, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21961606

ABSTRACT

Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10-50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging.


Subject(s)
Helium/chemistry , Molecular Imaging/methods , Nanotechnology/methods , Humans , Liver/cytology , Liver/diagnostic imaging , Microscopy, Electron , Monte Carlo Method , Time Factors , Ultrasonography
13.
PLoS One ; 6(5): e19444, 2011.
Article in English | MEDLINE | ID: mdl-21611128

ABSTRACT

One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the "vicious cycle" theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the "vicious cycle" theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the "vicious cycle" theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/enzymology , Gene Knockout Techniques , Mitochondria/metabolism , Superoxide Dismutase/genetics , Animals , Computational Biology , DNA, Mitochondrial/genetics , Gene Deletion , Gene Dosage/genetics , Models, Biological , Movement , Oxidative Stress , Phenotype , Superoxide Dismutase/metabolism , Superoxides/metabolism , Survival Analysis
14.
Biosci Rep ; 29(6): 405-15, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19604147

ABSTRACT

MST3 (mammalian sterile 20-like kinase 3) is a sterile 20 kinase reported to have a role in Fas-ligation- and staurosporine-induced cell death by unknown mechanism(s). We found that MST3-deficient cells are resistant to H2O2, which was reversed by reconstituting recombinant MST3. H2O2-induced JNK (c-Jun N-terminal kinase) activation was greatly enhanced in shMST3 cells (a cell line treated with short hairpin RNA against MST3). Suppression of JNK activity by the inhibitor SP600125 or by dominant-negative JNK2 re-sensitized cells to H2O2. Furthermore, c-Jun Ser-63 phosphorylation was augmented in shMST3 cells, whereas JunAA (dominant-negative c-Jun) reduced H2O2 resistance, implicating an AP-1 (activator protein 1) pathway in H2O2-induced survival signalling. Total cytoprotective HO-1 (haem oxygenase 1) expression, which was attenuated by JunAA, was induced up to 5-fold higher in shMST3 cells compared with controls. Zinc protoporphyrin IX, a potent inhibitor of HO reversed the H2O2-resistance of shMST3 cells. Our results reveal that H2O2-induced MST3-mediated cell death involves suppressing both a JNK survival pathway and up-regulation of HO-1.


Subject(s)
Apoptosis/physiology , Enzyme Activation , JNK Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/physiology , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Heme Oxygenase-1/metabolism , Humans , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Phosphorylation , Protein Serine-Threonine Kinases/genetics
15.
J Biol Chem ; 279(25): 26058-65, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15060079

ABSTRACT

Serum mannose-binding protein (MBP) neutralizes invading microorganisms by binding to cell surface carbohydrates and activating MBP-associated serine proteases-1, -2, and -3 (MASPs). MASP-2 subsequently cleaves complement components C2 and C4 to activate the complement cascade. To analyze the mechanisms of activation and substrate recognition by MASP-2, zymogen and activated forms have been produced, and MBP.MASP-2 complexes have been created. These preparations have been used to show that MBP modulates MASP-2 activity in two ways. First, MBP stimulates MASP-2 autoactivation by increasing the rate of autocatalysis when MBP.MASP-2 complexes bind to a glycan-coated surface. Second, MBP occludes accessory C4-binding sites on MASP-2 until activation occurs. Once these sites become exposed, MASP-2 binds to C4 while separate structural changes create a functional catalytic site able to cleave C4. Only activated MASP-2 binds to C2, suggesting that this substrate interacts only near the catalytic site and not at accessory sites. MASP-1 cleaves C2 almost as efficiently as MASP-2 does, but it does not cleave C4. Thus MASP-1 probably enhances complement activation triggered by MBP.MASP-2 complexes, but it cannot initiate activation itself.


Subject(s)
Mannose-Binding Lectin/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/physiology , Amino Acid Sequence , Animals , Binding Sites , Catalysis , Catalytic Domain , Cell Membrane/metabolism , Cloning, Molecular , Complement Activation , Complement C2/metabolism , Complement C4/metabolism , DNA, Complementary/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Hydrolysis , Kinetics , Liver/metabolism , Mannose-Binding Lectin/chemistry , Mannose-Binding Protein-Associated Serine Proteases , Models, Biological , Molecular Sequence Data , Protein Binding , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Temperature , Time Factors , Ultracentrifugation
16.
J Biol Chem ; 279(14): 14065-73, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-14724269

ABSTRACT

Mutations in the collagen-like domain of serum mannose-binding protein (MBP) interfere with the ability of the protein to initiate complement fixation through the MBP-associated serine proteases (MASPs). The resulting deficiency in the innate immune response leads to susceptibility to infections. Studies have been undertaken to define the region of MBP that interacts with MASPs and to determine how the naturally occurring mutations affect this interaction. Truncated and modified MBPs and synthetic peptides that represent segments of the collagen-like domain of MBP have been used to demonstrate that MASPs bind on the C-terminal side of the hinge region formed by an interruption in the Gly-X-Y repeat pattern of the collagen-like domain. The binding sites for MASP-2 and for MASP-1 and -3 overlap but are not identical. The two most common naturally occurring mutations in MBP result in substitution of acidic amino acids for glycine residues in Gly-X-Y triplets on the N-terminal side of the hinge. Circular dichroism analysis and differential scanning calorimetry demonstrate that the triple helical structure of the collagen-like domain is largely intact in the mutant proteins, but it is more easily unfolded than in wild-type MBP. Thus, the effect of the mutations is to destabilize the collagen-like domain, indirectly disrupting the binding sites for MASPs. In addition, at least one of the mutations has a further effect on the ability of MBP to activate MASPs.


Subject(s)
Collagen/chemistry , Mannose-Binding Lectin/analogs & derivatives , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calorimetry, Differential Scanning , Circular Dichroism , Complement System Proteins/metabolism , Mannose-Binding Lectin/chemistry , Mannose-Binding Protein-Associated Serine Proteases , Molecular Sequence Data , Mutagenesis , Protein Structure, Tertiary , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...