Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804903

ABSTRACT

Sweet potato (Ipomoea batatas) is one of the most important food crops worldwide and its leaves provide a dietary source of nutrients and various bioactive compounds. These constituents of sweet potato leaves (SPL) vary among varieties and play important roles in treating and preventing various diseases. Recently, more attentions in health-promoting benefits have led to several in vitro and in vivo investigations, as well as the identification and quantification of bioactive compounds in SPL. Among them, many new compounds have been reported as the first identified compounds from SPL with their dominant bioactivities. This review summarizes the current knowledge of the bioactive compositions of SPL and their health benefits. Since SPL serve as a potential source of micronutrients and functional compounds, they can be further developed as a sustainable crop for food and medicinal industries.


Subject(s)
Antioxidants/chemistry , Crops, Agricultural/chemistry , Ipomoea batatas/chemistry , Phytochemicals/chemistry , Plant Leaves/chemistry , Antioxidants/therapeutic use , Phytochemicals/therapeutic use
2.
Plants (Basel) ; 10(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805801

ABSTRACT

Tea (Camellia sinensis), a globally cultivated beverage crop, is sensitive to drought, which can have an adverse effect on the yield and quality of tea. Azoxystrobin (AZ) is one kind of fungicide considered as an agent to relieve damage caused by stress. Initially, the response of tea plant to osmotic-gradient stress was evaluated using leaf disc assays with PEG-induced osmotic stress. The decline of the maximum quantum yield of PSII (Fv/Fm), actual photosynthetic efficiency of PS II (Y(II)), total chlorophylls, carotenoids, DPPH radical scavenging capacity, reducing power, total phenols, and the increase in MDA was observed in leaf discs treated with a gradient of PEG solutions (22.8, 33.2, 41.1% PEG, and blank). These results revealed that efficiency of photosystem II (PSII), photosynthetic pigments, and antioxidant ability in leaf discs were inhibited with an aggravated lipid peroxidation under PEG-induced osmotic stress, and indicated leaf disc assay with moderate PEG iso-osmotic condition would reflect a portion of tea plant response to drought stress. Therefore, the protective effect of AZ (0.125 and 1.25 g a.i. L-1) on tea plants suffering from drought was evaluated using leaf disc assays with 22.8% PEG iso-osmotic condition. Pretreatment of AZ (0.125 a.i. g L-1) reversed Fv/Fm, Y(II), DPPH radical scavenging capacity, and reducing power with reduced MDA in PEG-treated leaf discs, but photosynthetic pigments, total phenols, and ascorbate peroxidase activity were irresponsive to AZ. An Alleviated physiological damage in tea leaf with AZ applying was preliminarily revealed in this study. A Rapid screening of agents for tea plants against drought was developed to assist in the selection of protective agents.

3.
BMC Plant Biol ; 15: 61, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25849781

ABSTRACT

BACKGROUND: The source and sink relationships between insect-induced galls and host plant leaves are interesting. In this research, we collected cup-like galls induced by Bruggmanniella sp. (Diptera: Cecidomyiidae) on host leaves of Litsea acuminata and assessed them to investigate source-sink relationships between galls and host leaves. We characterized several of their photosynthetic characteristics including chlorophyll fluorescence (Fv/Fm), stomatal conductance, and photosynthetic capacity, biochemical components such as total soluble sugar, starches, free amino acids, and soluble proteins. The structural analyses were performed under confocal, light, and scanning electron microscopies. RESULTS: Compared with host leaves, galls exhibited slightly lower chlorophyll fluorescence; however, stomatal conductance and photosynthetic capacity were not detected at all. Galls accumulated higher total soluble sugars and free amino acids but less soluble proteins than host leaves. No stomata was observed on exterior or interior gall surfaces under light or scanning electron microscopy, but their inner surfaces were covered with fungal hyphae. Confocal imagery showed a gradient of chloroplasts distribution between gall outer and inner surfaces. CONCLUSIONS: Our results strongly suggest that leaf-derived cecidomyiid galls are a type of chlorophyll-deficient non-leaf green tissue and consists on a novel sink in L. acuminate.


Subject(s)
Litsea/physiology , Litsea/parasitology , Photosynthesis , Plant Leaves/physiology , Plant Tumors/parasitology , Amino Acids/metabolism , Animals , Carbohydrate Metabolism/radiation effects , Carbon Dioxide/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Chloroplasts/ultrastructure , Diptera/physiology , Fluorescence , Litsea/radiation effects , Malondialdehyde/metabolism , Photosynthesis/radiation effects , Plant Leaves/radiation effects , Plant Proteins/metabolism , Solubility , Starch/metabolism
4.
Physiol Plant ; 152(3): 475-85, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24621096

ABSTRACT

Three relevant hypotheses - nutrition, environment and the enemies hypothesis - often invoked to explore source and sink relationships between galls and their host plants are still under dispute. In this research, chlorophyll fluorescence, gas exchange capacity, stomatal conductance, total carbon and nitrogen, total soluble sugars and starches, and scanning and transmission electron microscopy of two types of galls were used to investigate source-sink relationships. Compared with host leaves, these galls demonstrated slightly lower chlorophyll fluorescence; however, gas exchange capacity and stomatal conductance were not detected at all. Scanning electron micrographs demonstrated that the abaxial epidermis of host leaves contain normal amounts of stomata, whereas no stomata were observed on the exterior and interior surfaces of both types of galls. In addition, gall inner surfaces were covered with many kinds of fungal hyphae. Gall total carbon (C) and nitrogen (N) levels were lower but the C/N ratio was higher in galls than host leaves. Both types of galls accumulated higher total soluble sugars and starches than host leaves. Transmission electron micrographs also revealed that both types of galls contain plastoglobuli and giant starch granules during gall development. Results strongly indicate that leaf-derived cecidomyiid galls are sinks in Machilus thunbergii leaves. However, it is perplexing how larvae cycle and balance CO(2) and O(2) in gall growth chambers without stomata.


Subject(s)
Carbon/metabolism , Diptera/physiology , Lauraceae/metabolism , Nitrogen/metabolism , Plant Tumors/parasitology , Animals , Biological Transport , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Host-Parasite Interactions , Lauraceae/parasitology , Lauraceae/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Leaves/ultrastructure , Plant Transpiration
SELECTION OF CITATIONS
SEARCH DETAIL
...