Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 43(5): 979-987, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37606736

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of the peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by hypoxia, in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling. METHODS: PASMCs were incubated with different concentrations of GW501516 (10, 30, 100 nmol/L) under the hypoxic condition. The proliferation was determined by a CCK-8 assay. The cell cycle progression was analyzed by flow cytometry. The expression of PPARδ, S phase kinase-associated protein 2 (Skp2), and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting. Then PASMCs were treated with 100 nmol/ L GW501516, 100 nmol/L mammalian target of rapamycin (mTOR) inhibitor rapamycin and/or 2 µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs. RESULTS: The presented data demonstrated that hypoxia reduced the expression of PPARδ in an oxygen concentration- and time-dependent manner, and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle. In accordance with these findings, GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs. Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation, arresting the cell cycle, regulating the expression of Skp2 and p27, and inactivating mTOR in hypoxia-exposed PASMCs. Moreover, MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs. CONCLUSION: GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.

2.
Chin J Nat Med ; 17(2): 155-160, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30797422

ABSTRACT

Romipeptides A and B (1 and 2), two new romidepsin derivatives, and three known compounds, chromopeptide A (3), romidepsin (4) and valine-leucine dipeptide (5) were isolated from the fermentation broth of Chromobacterium violaceum No. 968. Their structures were elucidated by interpretation of their UV, HR-ESI-MS and NMR spectra. The absolute configuration of compound 1 and 2 were established by single crystal X-ray diffraction analysis. Compounds 1-5 were evaluated for their anti-proliferative activities against three human cancer cell lines, SW620, HL60, and A549. The results showed most of these compounds exhibited antitumor activities in vitro, in which compound 2 displayed potent cytotoxicity to SW620, HL60 and A549 cell lines, with IC50 of 12.5, 6.7 and 5.7 nmol·L-1, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Chromobacterium/metabolism , Depsipeptides/chemistry , Depsipeptides/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemistry Techniques, Analytical , Dipeptides/chemistry , Drug Screening Assays, Antitumor , Fermentation , Humans , Molecular Structure , Peptides, Cyclic/chemistry
3.
J Ind Microbiol Biotechnol ; 35(12): 1637-42, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18709395

ABSTRACT

A process for efficient production of erythromycin by Saccharopolyspora erythraea using statistical designs and feeding strategy was developed. The critical nutrient components were selected in accordance with fractional factorial design and were further optimized via response surface methodology. Three significant components (ZnSO(4), citric acid threonine) were identified for the optimization study. The optimum levels of these significant variables were determined with Box-Behnken design, which were ZnSO(4) 0.039 g/l, citric acid 0.24 g/l and threonine 0.42 g/l, respectively. A novel feeding strategy based on oxygen uptake rate (OUR) measurement was developed successfully to increase the flux of erythromycin biosynthesis, in which the optimized nutrient components was fed in the 50 l stirred bioreactor when OUR began to decline at 46 h. The maximum erythromycin production reached 10,622 U/ml, which was 11.7% higher than the control in the same cultivation conditions. It was the first report to integrate physiological parameter OUR and statistical methods to optimize erythromycin production.


Subject(s)
Erythromycin/biosynthesis , Industrial Microbiology/methods , Saccharopolyspora/metabolism , Bioreactors , Citric Acid/metabolism , Culture Media , Fermentation , Oxygen Consumption , Threonine/metabolism , Zinc Sulfate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...