Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Mol Cell Biol ; 25(1): 16, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750444

ABSTRACT

BACKGROUND: Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS: AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS: Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1ß, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1ß, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION: These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.


Subject(s)
Caspase 1 , Doxorubicin , Dual Oxidases , Heart Failure , Oxidative Stress , Pyroptosis , Reactive Oxygen Species , Up-Regulation , Heart Failure/metabolism , Heart Failure/genetics , Dual Oxidases/metabolism , Dual Oxidases/genetics , Reactive Oxygen Species/metabolism , Humans , Doxorubicin/pharmacology , Caspase 1/metabolism , Cell Line , Interleukin-18/metabolism , Interleukin-1beta/metabolism
2.
J Pharmacol Sci ; 131(1): 1-5, 2016 May.
Article in English | MEDLINE | ID: mdl-26260747

ABSTRACT

Polygalae Radix is an important medicinal plant that is widely used in most of Africa. 3,4,5-Trimethoxycinnamic acid (TMCA) is one of the constituents of Polygalae Radix. Until now, the mechanisms involved in the anti-seizure property of TMCA are still unclear. We examined the anti-seizure effect of TMCA. TMCA administered at doses of 5, 10 and 20 mg/kg and evaluated anti-seizure effects by maximal electroshock (MES) and pentylenetetrazol (PTZ) models in mice. TMCA administered at doses of 10 and 20 mg/kg significantly reduced the incidence of MES-induced tonic hindlimb extension (THE). TMCA significantly delayed the onset of myoclonic jerks (MJ), and decreased the seizure severity and mortality compared with the vehicle-treated animals in PTZ seizure model. TMCA 10 and 20 mg/kg treated groups also did not determined generalized clonic seizures (GCS). Pretreatment with a GABAA/benzodiazepine (BZ) receptor antagonist flumazenil blocked the anti-seizure effects of TMCA. These data support the further investigation of TMCA as a GABAA/BZ receptor agonist for anti-seizure therapy.


Subject(s)
Anticonvulsants/pharmacology , Cinnamates/pharmacology , Receptors, GABA-A/metabolism , Seizures/metabolism , Animals , Anticonvulsants/therapeutic use , Cinnamates/therapeutic use , Electroshock , Flumazenil/pharmacology , GABA Antagonists/pharmacology , Male , Mice , Pentylenetetrazole , Plant Roots , Polygala , Seizures/drug therapy , Seizures/etiology
3.
Eur J Pharmacol ; 714(1-3): 288-94, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23911889

ABSTRACT

The mechanisms involved in the anti-seizure property of piperine (1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]-(E,E)-piperidine, C17H19NO3) are still unclear. Piperine could activate transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor, and the rapid activation of whole-cell currents is antagonized by the competitive TRPV1 antagonist capsazepine. Interestingly, recent studies have reported that TRPV1 may be a novel anti-epileptogenic target which led us to hypothesize that the anti-seizure property of piperine involves the TRPV1 receptor. To test this hypothesis, we examined the effect of piperine on seizures induced in mice and identified the receptors involved in the suppression of seizure caused by maximal electroshock (MES) and pentylenetetrazol (PTZ) models. Piperine, administered at doses of 40 and 80 mg/kg, significantly delayed the onset of myoclonic jerks and generalized clonic seizures, and decreased the seizure stage and mortality compared with the vehicle-treated animals. Piperine also significantly reduced the incidence of MES-induced tonic hindlimb extension (THE) and PTZ-induced Fos immunoreactivity in the dentate gyrus. The anti-seizure effects of piperine were blocked by a TRPV1-selective antagonist capsazepine. Taken together, these data support the further investigation of piperine as a TRPV1 agonist for anti-seizure therapy.


Subject(s)
Alkaloids/pharmacology , Anticonvulsants/pharmacology , Benzodioxoles/pharmacology , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Seizures/drug therapy , Seizures/metabolism , TRPV Cation Channels/metabolism , Alkaloids/therapeutic use , Animals , Anticonvulsants/therapeutic use , Behavior, Animal/drug effects , Benzodioxoles/therapeutic use , Electroshock/adverse effects , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Pentylenetetrazole/adverse effects , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Proto-Oncogene Proteins c-fos/metabolism , Seizures/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...