Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 50(1): 46-53, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20964706

ABSTRACT

Melatonin is a free radical scavenger with potent antioxidant properties and immunomodulatory effects. The purpose of this study was to determine the effects of orally administered melatonin in a pancreatic fluid (PF)-induced lung inflammation and airway hyperreactivity model. Aerosolized PF was introduced into airways to induce inflammation in rats. Animals were randomized into three experimental groups: sham treated; PF treated (200 µL/kg); and PF with melatonin (10 mg/kg) pretreatment. Airway reactivity to methacholine, airflow and airway resistance, bronchoalveolar lavage (BAL) cellular differential, the tumor necrosis factor α (TNFα) level, lavage nitric oxide, hydroxyl radical, and lactic dehydrogenase (LDH) were compared among groups. mRNA expressions of inducible nitric oxide synthase (iNOS) and TNFα in lung tissues were determined by real-time polymerase chain reaction. Protein expressions of iNOS and nitrotyrosine and lung tissue myeloperoxidase (MPO) activity were determined using an ELISA assay. Oral melatonin treatment indicated anti-inflammatory efficacy as evidenced by decreased methacholine sensitivity by 24% and airway obstruction by 28%, reduction in BAL eosinophil (P < 0.01) and neutrophil counts (P < 0.05), LDH (P < 0.05), and TNFα concentrations (P < 0.05) when compared to levels in sham-treated rats. Melatonin-treated animals also had reduced nitric oxide and hydroxyl radical concentrations (P < 0.05) in lavage fluid. Oral melatonin significantly reduced mRNA and protein expression of iNOS (P < 0.05 and P < 0.01, respectively), TNFα (P < 0.05), nitrotyrosine (P < 0.05), and MPO activity (P < 0.05) in lung tissues when compared with the sham-treated animals. These results suggest that oral treatment with melatonin had a beneficial effect on PF-induced obstructive ventilatory insufficiency by attenuating nitrosative and oxidative stress.


Subject(s)
Administration, Oral , Melatonin/therapeutic use , Pancreatic Juice/immunology , Pneumonia/drug therapy , Administration, Inhalation , Animals , Bronchoalveolar Lavage , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Male , Melatonin/administration & dosage , Nitrates/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...