Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 246: 115889, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38043301

ABSTRACT

Programmed death ligand 1 (PD-L1) has been shown to suppress the anti-tumor immune response of some lung cancer patients, and thus PD-L1 expression may be a valuable predictor of the efficacy of anti-PD-1/PD-L1 monoclonal therapy in such patients. In this work, a sandwich approach to fluorescence resonance energy transfer (FRET) was used with green-emitting Yb3+/Ho3+-doped upconversion nanoparticles (UCNPs) and a rhodamine-conjugated conductive polymer as donor and acceptor, respectively. Yb3+/Ho3+-doped UCNPs were synthesized and then coated with poly(ethylene-co-vinyl alcohol), pEVAL, imprinted with PD-L1 peptide. Epitope-imprinted composite nanoparticles were characterized by dynamic light scattering, superconducting quantum interference magnetometry, and atomic force microscopy. Poly(triphenylamine rhodamine-3-acetic acid-co-3,4-ethoxylenedioxythiophene)s copolymers (p(TPAR-co-EDOT)) were imprinted with various epitopes of PD-L1 by in situ electrochemical polymerization. The epitope-imprinted polymer-coated electrodes were then characterized by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Finally, the sandwich sensing of various PD-L1 concentrations with peptide-imprinted p(TPAR-co-EDOT)-coated substrate and UCNP-containing magnetic peptide-imprinted pEVAL nanoparticles by FRET was conducted to measure the concentration of PD-L1 in A549 lung cancer cell lysate.


Subject(s)
Biosensing Techniques , Lung Neoplasms , Nanoparticles , Humans , Fluorescence Resonance Energy Transfer , Polymers/chemistry , B7-H1 Antigen , Nanoparticles/chemistry , Peptides , Rhodamines , Epitopes
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009872

ABSTRACT

OBJECTIVES@#To systematically evaluate the value of the platelet-to-lymphocyte ratio (PLR) in predicting coronary artery lesions (CAL) in Chinese children with Kawasaki Disease (KD).@*METHODS@#A comprehensive search was conducted in databases including PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Data, China Biomedical Literature Database, and China Science and Technology Journal Database from inception to December 2022. The quality of the included literature was assessed using the Newcastle-Ottawa Scale, and a Meta analysis was performed using Stata 15.1.@*RESULTS@#A total of ten published reports, involving 3 664 Chinese children with KD, were included in this Meta analysis, of whom 1 328 developed CAL. The Meta analysis revealed a sensitivity of 0.78 (95%CI: 0.71-0.83), specificity of 0.71 (95%CI: 0.61-0.80), overall diagnostic odds ratio of 8.69 (95%CI: 5.02-15.06), and an area under the curve of the summary receiver operating characteristic of 0.82 (95%CI: 0.78-0.85) for PLR in predicting CAL in the children with KD. The sensitivity, specificity, and area under the curve of summary receiver operating characteristic were lower for PLR alone compared to PLR in combination with other indicators. Sensitivity analysis demonstrated the stability of the Meta analysis results with no significant changes upon excluding individual studies. However, a significant publication bias was observed (P<0.001).@*CONCLUSIONS@#PLR demonstrates certain predictive value for CAL in Chinese children with KD.


Subject(s)
Child , Humans , Mucocutaneous Lymph Node Syndrome/pathology , Coronary Vessels/pathology , Lymphocytes , Biomarkers , China , Coronary Artery Disease/pathology
3.
Biosensors (Basel) ; 12(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35049659

ABSTRACT

C-reactive protein (CRP) is a non-specific biomarker of inflammation and may be associated with cardiovascular disease. In recent studies, systemic inflammatory responses have also been observed in cases of coronavirus disease 2019 (COVID-19). Molecularly imprinted polymers (MIPs) have been developed to replace natural antibodies with polymeric materials that have low cost and high stability and could thus be suitable for use in a home-care system. In this work, a MIP-based electrochemical sensing system for measuring CRP was developed. Such a system can be integrated with microfluidics and electronics for lab-on-a-chip technology. MIP composition was optimized using various imprinting template (CRP peptide) concentrations. Tungsten disulfide (WS2) was doped into the MIPs. Doping not only enhances the electrochemical response accompanying the recognition of the template molecules but also raises the top of the sensing range from 1.0 pg/mL to 1.0 ng/mL of the imprinted peptide. The calibration curve of the WS2-doped peptide-imprinted polymer-coated electrodes in the extended-gate field-effect transistor platform was obtained and used for the measurement of CRP concentration in real human serum.


Subject(s)
C-Reactive Protein/analysis , Molecularly Imprinted Polymers , Sulfides , Tungsten Compounds , Electrochemical Techniques , Electrodes , Humans , Peptides
4.
Biosens Bioelectron ; 200: 113930, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34979348

ABSTRACT

The level of C-reactive protein (CRP) in serum is frequently used to evaluate risk of coronary heart disease, and its concentration is related to cardiovascular disease, fibrosis and inflammation, cancer, and viral infections. In this work, three novel peptides, never previously used as imprinted templates, were selected, synthesized, and employed for epitope imprinting. Various imprinting concentrations of the template and various ratios of aniline (AN) to m-aminobenzenesulfonic acid (MSAN) were used in electropolymerization to form molecularly imprinted polymers (MIPs). The imprinting template and functional monomer concentrations were optimized to maximize the electrochemical response to target peptides. The surface morphologies of peptide- and non-imprinting poly(AN-co-MSAN) were observed using a scanning electron microscope (SEM) and an atomic force microscope (AFM). Moreover, the effect of doping of MIPs with a very small percentage of an MXene (e.g. Ti2C at 0.1 wt% in the preparation solution) on the electrochemical response was also studied. Ti2C doping dramatically increased sensing range from 0.1 to 100 fg/mL to 10000 fg/mL, and electrochemical responses were amplified by a factor of approximately 1.3 within the sensing range. Finally, commercially available serum was diluted and then measured using the MXene-doped PIP-coated electrodes to estimate the accuracy compared with ELISA results.


Subject(s)
Biosensing Techniques , Molecular Imprinting , C-Reactive Protein , Electrochemical Techniques , Peptides , Polymers
5.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639050

ABSTRACT

Porous silicon is of current interest for cardiac tissue engineering applications. While porous silicon is considered to be a biocompatible material, it is important to assess whether post-etching surface treatments can further improve biocompatibility and perhaps modify cellular behavior in desirable ways. In this work, porous silicon was formed by electrochemically etching with hydrofluoric acid, and was then treated with oxygen plasma or supercritical carbon dioxide (scCO2). These processes yielded porous silicon with a thickness of around 4 µm. The different post-etch treatments gave surfaces that differed greatly in hydrophilicity: oxygen plasma-treated porous silicon had a highly hydrophilic surface, while scCO2 gave a more hydrophobic surface. The viabilities of H9c2 cardiomyocytes grown on etched surfaces with and without these two post-etch treatments was examined; viability was found to be highest on porous silicon treated with scCO2. Most significantly, the expression of some key genes in the angiogenesis pathway was strongly elevated in cells grown on the scCO2-treated porous silicon, compared to cells grown on the untreated or plasma-treated porous silicon. In addition, the expression of several apoptosis genes were suppressed, relative to the untreated or plasma-treated surfaces.


Subject(s)
Biocompatible Materials/chemistry , Carbon Dioxide/chemistry , Myocytes, Cardiac , Silicon/chemistry , Bioengineering , Cell Survival , Porosity , Spectrum Analysis , Surface Properties
6.
Med Dosim ; 38(1): 35-41, 2013.
Article in English | MEDLINE | ID: mdl-22854426

ABSTRACT

Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification.


Subject(s)
Quality Assurance, Health Care/methods , Radiometry/instrumentation , Radiometry/standards , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/standards , X-Ray Intensifying Screens/standards , Equipment Design , Equipment Failure Analysis , Quality Assurance, Health Care/standards , Radiotherapy Dosage , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...