Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 1520, 2013.
Article in English | MEDLINE | ID: mdl-23519209

ABSTRACT

Stylophora pistillata is a widely used coral "lab-rat" species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16-24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation.


Subject(s)
Anthozoa/genetics , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Animals , Genetic Variation , Phylogeny , Reference Standards , Species Specificity
2.
ChemSusChem ; 6(1): 132-40, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22945593

ABSTRACT

The recycling of process water from strip mining extractions is a very relevant task both industrially and environmentally. The sedimentation of fine tailings during such processes, however, can often require long periods of time and/or the addition of flocculants which make later water recycling difficult. We propose the use of switchable water additives as reversible flocculants for clay/water suspensions. Switchable water additives are compounds such as diamines that make it possible to reversibly control the ionic strength of an aqueous solution. Addition of CO(2) to such an aqueous solution causes the ionic strength to rise dramatically, and the change is reversed upon removal of the CO(2). These additives, while in the presence of CO(2), promote the aggregation of clay tailings, reduce settling times, and greatly increase the clarity of the liberated water. The removal of CO(2) from the liberated water regenerates a low ionic strength solution that does not promote clay aggregation and settling until CO(2) is added again. Such reversible behavior would be useful in applications such as oil sands separations in which the recycled water must not promote aggregation. When added to kaolinite and montmorillonite clay suspensions, switchable water provided process waters of lower turbidity than those additives from inorganic salts or by CO(2)-treatment alone. When recollected, the switchable water supernatant was shown to be recyclable over three cycles for enhanced settling of kaolinite.


Subject(s)
Bentonite/chemistry , Kaolin/chemistry , Putrescine/analogs & derivatives , Carbon Dioxide/chemistry , Flocculation , Hydrogen-Ion Concentration , Industrial Waste , Mining , Osmolar Concentration , Putrescine/chemistry , Waste Management/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...