Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 109: 104715, 2021 04.
Article in English | MEDLINE | ID: mdl-33647741

ABSTRACT

This paper presents the design and synthesis of 4-(3-hydroxyanilino)-6-(1H-1,2,3-triazol-4-yl)quinazolines of scaffold 9 as selective B-Raf/B-RafV600E and potent EGFR/VEGFR2 kinase inhibitors. Total 14 compounds of scaffold 9 having different side chains at the triazolyl group with/without fluoro substituents at the anilino group were synthesized and investigated. Among them, 9m with a 2-carbamoylethyl side chain and C-4'/C-6' difluoro substituents was the most potent, which selectively inhibited B-Raf (IC50: 57 nM) and B-RafV600E (IC50: 51 nM) over C-Raf (IC50: 1.0 µM). Compound 9m also actively inhibited EGFR (IC50: 73 nM) and VEGFR2 (IC50: 7.0 nM) but not EGFRT790M and PDGFR-ß (IC50: >10 µM). Despite having good potency for B-Raf and B-RafV600E in the enzymatic assays, 9m was less active to inhibit melanoma A375 cells which proliferate due to constitutively activated B-Raf600E. The inferior activity of 9m for A375 was similar to that of sorafenib (6), suggesting that 9m might bind to the inactive conformations of B-Raf and B-RafV600E. Docking simulations could thus be performed to reveal the binding poses of 9m in B-Raf, B-RafV600E, and VEGFR2 kinases.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quinazolines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , raf Kinases/antagonists & inhibitors , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Quinazolines/chemistry , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
ACS Med Chem Lett ; 3(12): 1075-80, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-24900431

ABSTRACT

Through the syntheses of its C-1 desvinyl, C-7 methylene, C-7 exocyclic ethylidene, and various C-3 phenylmethyl analogues, the structure-activity relationship of antimitotic ottelione A (4) against tubulin and various cancer cells was established. The results indicated that compound 4 was a colchicine-competitive inhibitor and that the C-1 vinyl group is unnecessary for its potency, whereas the C-7 exocyclic double bond is essential, possibly because of its irreversible interaction with tubulin. Further optimization of the substituents on the phenylmethyl group at the C-3 position generated compound 10g with a 3'-fluoro-4'-methoxyphenylmethyl substituent, which was 6-38-fold more active against MCF-7, NCI-H460, and COLO205 cancer cells relative to 4. Results from in vitro tubulin polymerization assay confirmed the potency of compounds 4, 10g, and 11a.

SELECTION OF CITATIONS
SEARCH DETAIL
...