Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37200091

ABSTRACT

Inflammatory bowel disease (IBD) is a relapsing-remitting disorder characterized by chronic inflammation of the gastrointestinal (GI) tract. Anxiety symptoms are commonly observed in patients with IBD, but the mechanistic link between IBD and anxiety remains elusive. Here, we sought to characterize gut-to-brain signaling and brain circuitry responsible for the pathological expression of anxiety-like behaviors in male dextran sulfate sodium-induced (DSS-induced) experimental colitis mice. We found that DSS-treated mice displayed increased anxiety-like behaviors, which were prevented by bilateral GI vagal afferent ablation. The locus coeruleus (LC) is a relay center connecting the nucleus tractus solitarius to the basolateral amygdala (BLA) in controlling anxiety-like behaviors. Chemogenetic silencing of noradrenergic LC projections to the BLA reduced anxiety-like behaviors in DSS-treated mice. This work expands our understanding of the neural mechanisms by which IBD leads to comorbid anxiety and emphasizes a critical role of gastric vagal afferent signaling in gut-to-brain regulation of emotional states.


Subject(s)
Basolateral Nuclear Complex , Colitis , Inflammatory Bowel Diseases , Mice , Male , Animals , Basolateral Nuclear Complex/metabolism , Colitis/chemically induced , Anxiety , Inflammatory Bowel Diseases/metabolism , Solitary Nucleus/metabolism
2.
Mol Neurobiol ; 60(3): 1331-1352, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36445635

ABSTRACT

Autism spectrum disorder (ASD) represents a heterogeneous group of neurodevelopmental disorders characterized by deficits in social communication, social interaction, and the presence of restricted repetitive behaviors. The cause of ASD involves complex interactions between genetic and environmental factors. Haploinsufficiency of the Coiled-coil and C2 domain containing 1A (Cc2d1a) gene is causally linked to ASD, and obesity has been associated with worse outcomes for ASD. High-fat diet (HFD) feeding leads to the development of obesity and metabolic dysfunction; however, the effect of HFD on pre-existing autistic-like phenotypes remains to be clarified. Here, we report that male Cc2d1a conditional knockout (cKO) mice fed with HFD, from weaning onwards and throughout the experimental period, show a marked aggravation in autistic-like phenotypes, manifested in increased restricted repetitive behaviors and impaired performance in the preference for social novelty, but not in sociability and cognitive impairments assessed using the object location memory, novel object recognition, and Morris water maze tests. HFD feeding also results in increased numbers of reactive microglia and astrocytes, and exacerbates reductions in dendritic complexity and spine density of hippocampal CA1 pyramidal neurons. Furthermore, we demonstrate that chronic treatment with minocycline, a semisynthetic tetracycline-derived antibiotic, rescues the observed behavioral and morphological deficits in Cc2d1a cKO mice fed with HFD. Collectively, these findings highlight an aggravating role of HFD in pre-existing autistic-like phenotypes and suggest that minocycline treatment can alleviate abnormal neuronal morphology and behavioral symptoms associated with ASD resulted from the interplay between genetic and environmental risk factors.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , DNA-Binding Proteins , Animals , Male , Mice , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Diet, High-Fat , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Minocycline , Obesity , Social Behavior , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...