Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mol Cancer Ther ; 23(6): 766-779, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38592383

ABSTRACT

Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.


Subject(s)
Aurora Kinase A , Everolimus , Proto-Oncogene Proteins c-myc , Xenograft Model Antitumor Assays , Humans , Animals , Aurora Kinase A/antagonists & inhibitors , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Everolimus/pharmacology , Everolimus/pharmacokinetics , Everolimus/administration & dosage , Cell Line, Tumor , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36749735

ABSTRACT

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Pyrimidines , Animals , Humans , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
3.
Eur J Med Chem ; 224: 113673, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34303872

ABSTRACT

Rare oncogenic NTRK gene fusions result in uncontrolled TRK signaling leading to various adult and pediatric solid tumors. Based on the architecture of our multi-targeted clinical candidate BPR1K871 (10), we designed and synthesized a series of quinazoline compounds as selective and orally bioavailable type II TRK inhibitors. Property-driven and lead optimization strategies informed by structure-activity relationship studies led to the identification of 39, which showed higher (about 15-fold) selectivity for TRKA over AURA and AURB, as well as potent cellular activity (IC50 = 56.4 nM) against the KM12 human colorectal cancer cell line. 39 also displayed good AUC and oral bioavailability (F = 27%), excellent in vivo efficacy (TGI = 64%) in a KM12 xenograft model, and broad-spectrum anti-TRK mutant potency (IC50 = 3.74-151.4 nM), especially in the double-mutant TRKA enzymatic assays. 39 is therefore proposed for further development as a next-generation, selective, and orally-administered type II TRK inhibitor.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Receptor, trkA/antagonists & inhibitors , Administration, Oral , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Binding Sites , Cell Line, Tumor , Half-Life , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Rats , Receptor, trkA/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
4.
J Med Chem ; 64(11): 7312-7330, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34009981

ABSTRACT

The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25, which demonstrated an 8-fold higher oral AUC (F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC-amplified cancers including SCLC.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-myc/metabolism , Pyrimidines/chemistry , Animals , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Binding Sites , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Humans , Lung Neoplasms/drug therapy , Male , Mice , Mice, Inbred ICR , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Transl Oncol ; 14(1): 100897, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33069101

ABSTRACT

Zinc(II)-dipicolylamine (Zn-DPA) has been shown to specifically identify and bind to phosphatidylserine (PS), which exists in bulk in the tumor microenvironment. BPRDP056, a Zn-DPA-SN38 conjugate was designed to provide PS-targeted drug delivery of a cytotoxic SN38 to the tumor microenvironment, thereby allowing a lower dosage of SN38 that induces apoptosis in cancer cells. Micro-Western assay showed that BPRDP056 exhibited apoptotic signal levels similar to those of CPT-11 in the treated tumors growing in mice. Pharmacokinetic study showed that BPRDP056 has excellent systemic stability in circulation in mice and rats. BPRDP056 is accumulated in tumors and thus increases the cytotoxic effects of SN38. The in vivo antitumor activities of BPRDP056 have been shown to be significant in subcutaneous pancreas, prostate, colon, liver, breast, and glioblastoma tumors, included an orthotopic pancreatic tumor, in mice. BPRDP056 shrunk tumors at a lower (~20% only) dosing intensity of SN38 compared to that of SN38 conjugated in CPT-11 in all tumor models tested. A wide spectrum of antitumor activities is expected to treat all cancer types of PS-rich tumor microenvironments. BPRDP056 is a first-in-class small molecule drug conjugate for cancer therapy.

6.
Sci Rep ; 10(1): 2838, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071352

ABSTRACT

A major obstacle to nanodrugs-mediated cancer therapy is their rapid uptake by the reticuloendothelial system that decreases the systemic exposure of the nanodrugs to tumors and also increases toxicities. Intralipid has been shown to reduce nano-oxaliplatin-mediated toxicity while improving bioavailability. Here, we have found that Intralipid reduces the cytotoxicity of paclitaxel for human monocytic cells, but not for breast, lung, or pancreatic cancer cells. Intralipid also promotes the polarization of macrophages to the anti-cancer M1-like phenotype. Using a xenograft breast cancer mouse model, we have found that Intralipid pre-treatment significantly increases the amount of paclitaxel reaching the tumor and promotes tumor apoptosis. The combination of Intralipid with half the standard clinical dose of Abraxane reduces the tumor growth rate as effectively as the standard clinical dose. Our findings suggest that pre-treatment of Intralipid has the potential to be a powerful agent to enhance the tumor cytotoxic effects of Abraxane and to reduce its off-target toxicities.


Subject(s)
Albumin-Bound Paclitaxel/pharmacology , Breast Neoplasms/drug therapy , Immunity, Innate/drug effects , Phospholipids/pharmacology , Soybean Oil/pharmacology , Animals , Antineoplastic Agents , Apoptosis/drug effects , Biological Availability , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Emulsions/pharmacology , Female , Heterografts , Humans , Mice , Nanoparticles/chemistry , Oxaliplatin/pharmacology , Paclitaxel/chemistry , Paclitaxel/pharmacology , Phospholipids/immunology , Soybean Oil/immunology , Xenograft Model Antitumor Assays
7.
J Med Chem ; 62(24): 11135-11150, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31721578

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Stromal Tumors/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Pyrimidines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis , Cell Proliferation , Female , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/enzymology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/enzymology , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred ICR , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Phosphorylation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/genetics , Pyrimidines/chemistry , Rats, Sprague-Dawley , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/genetics
8.
J Med Chem ; 62(22): 10108-10123, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31560541

ABSTRACT

Epidermal growth factor receptor (EGFR)-targeted therapy in non-small cell lung cancer represents a breakthrough in the field of precision medicine. Previously, we have identified a lead compound, furanopyrimidine 2, which contains a (S)-2-phenylglycinol structure as a key fragment to inhibit EGFR. However, compound 2 showed high clearance and poor oral bioavailability in its pharmacokinetics studies. In this work, we optimized compound 2 by scaffold hopping and exploiting the potent inhibitory activity of various warhead groups to obtain a clinical candidate, 78 (DBPR112), which not only displayed a potent inhibitory activity against EGFRL858R/T790M double mutations but also exhibited tenfold potency better than the third-generation inhibitor, osimertinib, against EGFR and HER2 exon 20 insertion mutations. Overall, pharmacokinetic improvement through lead-to-candidate optimization yielded fourfold oral AUC better that afatinib along with F = 41.5%, an encouraging safety profile, and significant antitumor efficacy in in vivo xenograft models. DBPR112 is currently undergoing phase 1 clinical trial in Taiwan.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Exons , Humans , Male , Mice, Inbred ICR , Mice, Nude , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Pyrimidines/chemistry , Rats , Receptor, ErbB-2 , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Oncotarget ; 7(52): 86239-86256, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27863392

ABSTRACT

The design and synthesis of a quinazoline-based, multi-kinase inhibitor for the treatment of acute myeloid leukemia (AML) and other malignancies is reported. Based on the previously reported furanopyrimidine 3, quinazoline core containing lead 4 was synthesized and found to impart dual FLT3/AURKA inhibition (IC50 = 127/5 nM), as well as improved physicochemical properties. A detailed structure-activity relationship study of the lead 4 allowed FLT3 and AURKA inhibition to be finely tuned, resulting in AURKA selective (5 and 7; 100-fold selective over FLT3), FLT3 selective (13; 30-fold selective over AURKA) and dual FLT3/AURKA selective (BPR1K871; IC50 = 19/22 nM) agents. BPR1K871 showed potent anti-proliferative activities in MOLM-13 and MV4-11 AML cells (EC50 ~ 5 nM). Moreover, kinase profiling and cell-line profiling revealed BPR1K871 to be a potential multi-kinase inhibitor. Functional studies using western blot and DNA content analysis in MV4-11 and HCT-116 cell lines revealed FLT3 and AURKA/B target modulation inside the cells. In vivo efficacy in AML xenograft models (MOLM-13 and MV4-11), as well as in solid tumor models (COLO205 and Mia-PaCa2), led to the selection of BPR1K871 as a preclinical development candidate for anti-cancer therapy. Further detailed studies could help to investigate the full potential of BPR1K871 as a multi-kinase inhibitor.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinase A/antagonists & inhibitors , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Quinazolines/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Male , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
10.
Eur J Med Chem ; 100: 151-61, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26081023

ABSTRACT

Numerous FLT3 inhibitors have been explored as a viable therapy for the treatment of acute myeloid leukemia (AML). However, clinical data have been underwhelming due to incomplete inhibition of FLT3 or the emergence of resistant mutations treated with these older agents. We previously developed a series of 3-phenyl-1H-5-pyrazolylamine derivatives as highly potent and selective FLT3 inhibitors with good in vivo efficacy using an intravenous (IV) route. However, the poor bioavailability of these pyrazole compounds limits the development of these promising antileukemic compounds for clinical use. Herein, we describe a novel class of 5-phenyl-thiazol-2-ylamine compounds that are multi-targeted FLT3 inhibitors. From this class of compounds, compound 7h was very potent against AML cell lines and exhibited excellent oral efficacy in AML xenograft models. In addition, further studies demonstrated that compound 7h exhibited potent in vitro and in vivo activities against clinically relevant AC220 (3)-resistant kinase domain mutants of FLT3-ITD.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms, Experimental/drug therapy , Point Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred ICR , Mice, Nude , Molecular Structure , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
11.
Cancer Nurs ; 38(6): 475-83, 2015.
Article in English | MEDLINE | ID: mdl-25629893

ABSTRACT

BACKGROUND: Understanding the sexual experience of women after gynecological cancer is important for nurses caring for this population. Sexual experience should be studied within women's sociocultural context because it influences the construction of sex. However, the sexual experience of Chinese women after gynecological cancer has not been examined qualitatively. OBJECTIVE: The aim of this study is to explore the sexual experience of Taiwanese women after treatment for gynecological cancer. METHODS: Data for this phenomenological study were collected during in-depth, semistructured interviews with 11 women purposively recruited from outpatients of the gynecological clinic of a medical center in northern Taiwan. Interview data were analyzed using the Colaizzi method. RESULTS: Data analysis yielded 4 themes: (1) suffering from sexual changes and difficulties, (2) judgments and uncertainty about the appropriateness of sexual behavior, (3) maintenance and transformation of sexual expression, and (4) reinterpretation and reaffirmation of feminine value. CONCLUSIONS: This woman-centered view of the sexual experience of Taiwanese gynecological cancer survivors can help healthcare professionals understand and educate Chinese and Asian clients about women's sexual expression during and after cancer treatment. IMPLICATIONS FOR PRACTICE: This woman-centered view of the sexual experience of Taiwanese gynecological cancer survivors can help healthcare professionals understand and educate women about possible alternative ways of sexual expression during and after cancer treatment.


Subject(s)
Genital Neoplasms, Female/psychology , Sexual Behavior/psychology , Survivors/psychology , Adult , Female , Genital Neoplasms, Female/therapy , Humans , Middle Aged , Qualitative Research , Survivors/statistics & numerical data , Taiwan
12.
PLoS One ; 9(1): e83160, 2014.
Article in English | MEDLINE | ID: mdl-24416160

ABSTRACT

Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD(+) AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD(+) AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/therapeutic use , Urea/analogs & derivatives , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Rats , Signal Transduction/drug effects , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use , Vorinostat , fms-Like Tyrosine Kinase 3/metabolism
13.
Anticancer Drugs ; 24(10): 1047-57, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24025560

ABSTRACT

BPR0C305 is a novel N-substituted indolyl glyoxylamide previously reported with in-vitro cytotoxic activity against a panel of human cancer cells including P-gp-expressing multiple drug-resistant cell sublines. The present study further examined the underlying molecular mechanism of anticancer action and evaluated the in-vivo antitumor activities of BPR0C305. BPR0C305 is a novel synthetic small indole derivative that demonstrates in-vitro activities against human cancer cell growth by inhibiting tubulin polymerization, disrupting cellular microtubule assembly, and causing cell cycle arrest at the G2/M phase. It is also orally active against leukemia and solid tumor growths in mouse models. Findings of these pharmacological and pharmacokinetic studies suggest that BPR0C305 is a promising lead compound for further preclinical developments.


Subject(s)
Aminoquinolines/pharmacology , Antineoplastic Agents/pharmacology , Indoles/pharmacology , Microtubules/drug effects , Administration, Oral , Aminoquinolines/administration & dosage , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Indoles/administration & dosage , Indoles/pharmacokinetics , Indoles/therapeutic use , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Nude , Microtubules/pathology , Tubulin/metabolism , Xenograft Model Antitumor Assays
14.
Bioorg Med Chem ; 21(11): 2856-67, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23618709

ABSTRACT

Preclinical investigations and early clinical trials suggest that FLT3 inhibitors are a viable therapy for acute myeloid leukemia. However, early clinical data have been underwhelming due to incomplete inhibition of FLT3. We have developed 3-phenyl-1H-5-pyrazolylamine as an efficient template for kinase inhibitors. Structure-activity relationships led to the discovery of sulfonamide, carbamate and urea series of FLT3 inhibitors. Previous studies showed that the sulfonamide 4 and carbamate 5 series were potent and selective FLT3 inhibitors with good in vivo efficacy. Herein, we describe the urea series, which we found to be potent inhibitors of FLT3 and VEGFR2. Some inhibited growth of FLT3-mutated MOLM-13 cells more strongly than the FLT3 inhibitors sorafenib (2) and ABT-869 (3). In preliminary in vivo toxicity studies of the four most active compounds, 10f was found to be the least toxic. A further in vivo efficacy study demonstrated that 10f achieved complete tumor regression in a higher proportion of MOLM-13 xenograft mice than 4 and 5 (70% vs 10% and 40%). These results show that compound 10f possesses improved pharmacologic and selectivity profiles and could be more effective than previously disclosed FLT3 inhibitors in the treatment of acute myeloid leukemia.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzamides/chemical synthesis , Benzamides/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Urea/analogs & derivatives , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Humans , Inhibitory Concentration 50 , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Sensitivity and Specificity , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/chemistry
15.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610398

ABSTRACT

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Subject(s)
Cell Cycle Proteins/metabolism , Centrosome/ultrastructure , Enzyme Inhibitors/pharmacology , Kinetochores/ultrastructure , Microtubules/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Aurora Kinase A , Aurora Kinases , Carcinoma, Hepatocellular/metabolism , Cell Cycle , Crystallography, X-Ray , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Nude , Mitosis , Neoplasm Transplantation , Phosphorylation , Protein Structure, Tertiary
16.
Hu Li Za Zhi ; 60(2): 61-70, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23575616

ABSTRACT

BACKGROUND: Recent studies have demonstrated that women treated for gynecological cancer experience long-term sexual problems. Although several studies have described physical sexual dysfunction among gynecological cancer survivors, there is a relative dearth of research related to sexual satisfaction in women treated for this disease. PURPOSE: This study explores sexual satisfaction and related factors in women who have undergone gynecological cancer therapy. METHODS: This study used a cross-sectional and descriptive-correlational design. A total of 158 female participants were recruited from the gynecology and obstetrics department of a medical center in northern Taiwan. Eighty-three were women treated more than one year ago for stage 1 to 3 gynecological cancer; the remaining 75 had no history of cancer who had visited the medical center for routine cervical cancer screening. Structured questionnaires collected data on participant demographics, gynecological cancer characteristics, and sexual satisfaction. Data were analyzed using the Chi-Square test, Mann-Whitney U test, Krauskal-Wallis test, and Spearman rank correlation. RESULTS: (1) Participants in the recent gynecological cancer group reported significantly less sexual satisfaction than their healthy control peers; (2) Level of sexual satisfaction reported by participants in the recent gynecological cancer group was significantly related to the following factors: number of years since treatment, participant age, relationship status, and financial condition. Those who received therapy one year ago reported low levels of sexual satisfaction; those who were younger, richer, or had a better relationship status reported better levels of sexual satisfaction. CONCLUSIONS/IMPLICATIONS FOR PRACTICE: Study findings can help healthcare professionals understand and educate patients about the potential sexual health implications of gynecological cancer treatment. Healthcare professionals can focus particular attention on patients who are older, poorer, or have a relatively poor relationship status.


Subject(s)
Genital Neoplasms, Female/psychology , Personal Satisfaction , Sexual Behavior , Adult , Cross-Sectional Studies , Female , Humans , Middle Aged
17.
Invest New Drugs ; 30(1): 164-75, 2012 Feb.
Article in English | MEDLINE | ID: mdl-20890633

ABSTRACT

Designed from a high throughput screened hit compound, novel 2-amino-1-thiazolyl imidazoles were synthesized and demonstrated cytotoxicity against human cancer cells. 1-(4-Phenylthiazol-2-yl)-4-(thiophen-2-yl)-1H-imidazol-2-amine (compound 2), a 2-amino-1-thiazolyl imidazole, inhibited tubulin polymerization, interacted with the colchicine-binding sites of tubulins, and caused cell cycle arrest at the G(2)/M phase in human gastric cancer cells. Disruption of the microtubule structure in cancer cells by compound 2 was also observed. Compound 2 concentration-dependently inhibited the proliferation of cancer cells in histocultured human gastric and colorectal tumors. Given orally, compound 2 prolonged the lifespans of leukemia mice intraperitoneally inoculated with the murine P388 leukemic cells. We report 2-amino-1-thiazolyl imidazoles as a novel class of orally active microtubule-destabilizing anticancer agents.


Subject(s)
Antineoplastic Agents/administration & dosage , Imidazoles/administration & dosage , Neoplasms, Experimental/drug therapy , Thiazoles/administration & dosage , Tubulin Modulators/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding, Competitive , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/metabolism , Dose-Response Relationship, Drug , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred DBA , Mice, Nude , Microtubules/drug effects , Microtubules/metabolism , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/metabolism , Time Factors , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism
18.
Bioorg Med Chem ; 19(14): 4173-82, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21708468

ABSTRACT

Preclinical investigations and early clinical trial studies suggest that FLT3 inhibitors offer a viable therapy for acute myeloid leukemia. However, early clinical data for direct FLT3 inhibitors provided only modest results because of the failure to fully inhibit FLT3. We have designed and synthesized a novel class of 3-phenyl-1H-5-pyrazolylamine-derived compounds as FLT3 inhibitors which exhibit potent FLT3 inhibition and high selectivity toward different receptor tyrosine kinases. The structure-activity relationships led to the discovery of two series of FLT3 inhibitors, and some potent compounds within these two series exhibited comparable potency to FLT3 inhibitors sorafenib (3) and ABT-869 (4) in both wt-FLT3 enzyme inhibition and FLT3-ITD inhibition on cell growth (MOLM-13 and MV4;11 cells). In particular, the selected compound 12a exhibited the ability to regress tumors in mouse xenograft models using MOLM-13 and MV4;11 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indazoles/chemistry , Indazoles/pharmacology , Mice , Molecular Structure , Niacinamide/analogs & derivatives , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Sorafenib , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , fms-Like Tyrosine Kinase 3/metabolism
19.
Cancer Sci ; 102(1): 182-91, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21040217

ABSTRACT

BPR0C261 is a synthetic small molecule compound cytotoxic against human cancer cells and active prolonging the lifespan of leukemia mice. In the present study, we further investigated the mechanisms of its anticancer action and found that BPR0C261 inhibited microtubule polymerization through interacting with the colchicine binding sites on tubulins, disrupted microtubule arrangement and caused cell cycle arrest at G(2)/M phase in cancer cells. BPR0C261 also inhibited the clonogenic growths of cancer cells and showed cytotoxicity against human cervical cancer cells of multidrug-resistant phenotype. In addition, BPR0C261 concentration-dependently inhibited the proliferation and migration of HUVECs and disrupted the endothelial capillary-like tube formations in HUVEC and rat aorta ring cultures. Given orally, BPR0C261 inhibited angiogenesis in s.c. implanted Matrigel plugs in mice. Notably, its IC(50) values against the endothelial cell growths were approximately 10-fold lower than those against the cancer cells. It was found orally absorbable in mice and showed a good oral bioavailability (43%) in dogs. BPR0C261 permeated through the human intestinal Caco-2 cell monolayer, suggesting oral availability in humans. Orally absorbed BPR0C261 distributed readily into the s.c. xenografted tumors in nude mice in which the tumor tissue levels of BPR0C261 were found oral dose-dependent. BPR0C261 showed in vivo activities against human colorectal, gastric, and nasopharyngeal tumors in nude mice. Most interestingly, the combination of BPR0C261 plus cisplatin synergistically prolonged the lifespans of mice inoculated with murine leukemia cells. Thus, BPR0C261 is a novel orally active tubulin-binding antitumor agent with antimitotic, apoptosis-inducing, and vasculature disrupting activities.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Indoles/pharmacology , Thiazoles/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Dogs , Humans , Leukemia, Experimental/drug therapy , Male , Mice , Mice, Inbred Strains , Microtubules/chemistry , Microtubules/drug effects , Rats , Rats, Sprague-Dawley
20.
J Med Chem ; 53(20): 7316-26, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20961149

ABSTRACT

HTS hit 7 was modified through hybrid design strategy to introduce a chiral side chain followed by introduction of Michael acceptor group to obtain potent EGFR kinase inhibitors 11 and 19. Both 11 and 19 showed over 3 orders of magnitude enhanced HCC827 antiproliferative activity compared to HTS hit 7 and also inhibited gefitinib-resistant double mutant (DM, T790M/L858R) EGFR kinase at nanomolar concentration. Moreover, treatment with 19 shrinked tumor in nude mice xenograft model.


Subject(s)
Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , ErbB Receptors/genetics , Gefitinib , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...